MLP-mmWP: High-Precision Millimeter Wave Positioning Based on MLP-Mixer Neural Networks
Abstract
:1. Introduction
- A fashionable and up-to-date AI concept MLP-Mixer named MLP-mmWP is first adopted and introduced for the task of MMW positioning;
- MLP-mmWP is an end-to-end neural network framework that does not rely on any handcrafted feature operation. It can predict the user location using communication information between the base and the user’s device;
- This study proves that MLP-Mixer is an effective method for the task of MMW positioning. Moreover, extensive experiments conducted in a popular public dataset (https://github.com/gante/mmWave-localization-learning, accessed on 10 April 2022) of outdoor scenarios demonstrate that MLP-mmWP can achieve high positioning accuracy with various noise levels and distinctly outperforms other the state-of-the-art (SOTA) methods.
2. System Model
2.1. System Modeling
2.2. Problem Definition
2.3. Simulation Setting
3. Methods
3.1. Background of MLP-Mixer
3.2. The Proposed Method and Training Details
4. Experiments and Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwon, G.; Conti, A.; Park, H.; Win, M.Z. Joint communication and localization in millimeter wave networks. IEEE J. Sel. Top. Signal Process. 2021, 15, 1439–1454. [Google Scholar] [CrossRef]
- Božanić, M.; Sinha, S. Mobile Communication Networks: 5G and a Vision of 6G; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Wang, Z.; Du, Y.; Wei, K.; Han, K.; Xu, X.; Wei, G.; Tong, W.; Zhu, P.; Ma, J.; Wang, J.; et al. Vision, application scenarios, and key technology trends for 6G mobile communications. Sci. China Inf. Sci. 2022, 65, 151301. [Google Scholar] [CrossRef]
- Santos, G.L.; Endo, P.T.; Sadok, D.; Kelner, J. When 5G meets deep learning: A systematic review. Algorithms 2020, 13, 208. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, Y.C.; Niyato, D. 6G Visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence. China Commun. 2019, 16, 1–14. [Google Scholar] [CrossRef]
- Almutairi, M.S. Deep learning-based solutions for 5G network and 5G-enabled Internet of vehicles: Advances, meta-data analysis, and future direction. Math. Probl. Eng. 2022, 2022, 6855435. [Google Scholar] [CrossRef]
- Asaad, S.M.; Maghdid, H.S. A Comprehensive Review of Indoor/Outdoor Localization Solutions in IoT era: Research Challenges and Future Perspectives. Comput. Netw. 2022, 212, 109041. [Google Scholar] [CrossRef]
- Pan, Y.; Pan, C.; Jin, S.; Wang, J. Joint Channel Estimation and Localization in the Near Field of RIS Enabled mmWave/subTHz Communications. arXiv 2022, arXiv:2208.11343. [Google Scholar]
- Bourdoux, A.; Barreto, A.N.; van Liempd, B.; de Lima, C.; Dardari, D.; Belot, D.; Lohan, E.S.; Seco-Granados, G.; Sarieddeen, H.; Wymeersch, H.; et al. 6G white paper on localization and sensing. arXiv 2020, arXiv:2006.01779. [Google Scholar]
- De Lima, C.; Belot, D.; Berkvens, R.; Bourdoux, A.; Dardari, D.; Guillaud, M.; Isomursu, M.; Lohan, E.S.; Miao, Y.; Barreto, A.N.; et al. Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges. IEEE Access 2021, 9, 26902–26925. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Han, S.; Chih-Lin, I.; Heath, R.W. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE J. Sel. Areas Commun. 2016, 34, 998–1009. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Sun, S.; Xu, G.; Su, X.; Cai, Y. Beam-space multiplexing: Practice, theory, and trends, from 4G TD-LTE, 5G, to 6G and beyond. IEEE Wirel. Commun. 2020, 27, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Patil, M.; Yang, C.; Mao, S.; Patel, P.A. Deep convolutional Gaussian Processes for Mmwave outdoor localization. In Proceedings of the ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 8323–8327. [Google Scholar]
- Liu, C.; Helgert, H.J. An improved adaptive beamforming-based machine learning method for positioning in massive mimo systems. Int. J. Adv. Internet Technol. 2020, 6, 1–12. [Google Scholar]
- Gante, J.; Falcao, G.; Sousa, L. Deep learning architectures for accurate millimeter wave positioning in 5G. Neural Process. Lett. 2020, 51, 487–514. [Google Scholar] [CrossRef]
- Mendrzik, R.; Meyer, F.; Bauch, G.; Win, M.Z. Enabling situational awareness in millimeter wave massive MIMO systems. IEEE J. Sel. Top. Signal Process. 2019, 13, 1196–1211. [Google Scholar] [CrossRef]
- Butt, M.M.; Pantelidou, A.; Kovács, I.Z. ML-assisted UE positioning: Performance analysis and 5G architecture enhancements. IEEE Open J. Veh. Technol. 2021, 2, 377–388. [Google Scholar] [CrossRef]
- Grumiaux, P.A.; Kitić, S.; Girin, L.; Guérin, A. A survey of sound source localization with deep learning methods. J. Acoust. Soc. Am. 2022, 152, 107–151. [Google Scholar] [CrossRef]
- Sadr, M.A.M.; Gante, J.; Champagne, B.; Falcao, G.; Sousa, L. Uncertainty Estimation via Monte Carlo Dropout in CNN-Based mmWave MIMO Localization. IEEE Signal Process. Lett. 2021, 29, 269–273. [Google Scholar] [CrossRef]
- Vieira, J.; Leitinger, E.; Sarajlic, M.; Li, X.; Tufvesson, F. Deep convolutional neural networks for massive MIMO fingerprint-based positioning. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–6. [Google Scholar]
- Koike-Akino, T.; Wang, P.; Pajovic, M.; Sun, H.; Orlik, P.V. Fingerprinting-based indoor localization with commercial MMWave WiFi: A deep learning approach. IEEE Access 2020, 8, 84879–84892. [Google Scholar] [CrossRef]
- Yan, L.; Ding, H.; Zhang, L.; Liu, J.; Fang, X.; Fang, Y.; Xiao, M.; Huang, X. Machine learning-based handovers for sub-6 GHz and mmWave integrated vehicular networks. IEEE Trans. Wirel. Commun. 2019, 18, 4873–4885. [Google Scholar] [CrossRef]
- Vashist, A.; Li, M.P.; Ganguly, A.; PD, S.M.; Hochgraf, C.; Ptucha, R.; Kwasinski, A.; Kuhl, M.E. KF-Loc: A Kalman filter and machine learning integrated localization system using consumer-grade millimeter-wave hardware. IEEE Consum. Electron. Mag. 2021, 11, 65–77. [Google Scholar] [CrossRef]
- Yang, J.; Xu, J.; Li, X.; Jin, S.; Gao, B. Integrated communication and localization in mmwave systems. arXiv 2020, arXiv:2009.13135. [Google Scholar]
- Pandya, S.B.; Visumathi, J.; Mahdal, M.; Mahanta, T.K.; Jangir, P. A Novel MOGNDO Algorithm for Security-Constrained Optimal Power Flow Problems. Electronics 2022, 11, 3825. [Google Scholar] [CrossRef]
- Yin, M.; Veldanda, A.K.; Trivedi, A.; Zhang, J.; Pfeiffer, K.; Hu, Y.; Garg, S.; Erkip, E.; Righetti, L.; Rangan, S. Millimeter wave wireless assisted robot navigation with link state classification. IEEE Open J. Commun. Soc. 2022, 3, 493–507. [Google Scholar] [CrossRef]
- Javadi, S.H.; Moosaei, H.; Ciuonzo, D. Learning wireless sensor networks for source localization. Sensors 2019, 19, 635. [Google Scholar] [CrossRef] [Green Version]
- Shastri, A.; Palacios, J.; Casari, P. Millimeter Wave Localization with Imperfect Training Data using Shallow Neural Networks. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 674–679. [Google Scholar]
- AlHajri, M.I.; Ali, N.T.; Shubair, R.M. Indoor localization for IoT using adaptive feature selection: A cascaded machine learning approach. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2306–2310. [Google Scholar] [CrossRef] [Green Version]
- Tolstikhin, I.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Keysers, D.; Uszkoreit, J.; Lucic, M.; et al. Mlp-mixer: An all-mlp architecture for vision. arXiv 2021, arXiv:2105.01601. [Google Scholar]
- Gante, J.; Sousa, L.; Falcao, G. Dethroning GPS: Low-power accurate 5G positioning systems using machine learning. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 240–252. [Google Scholar] [CrossRef]
- Huang, B.; Chen, W.; Lin, C.L.; Juang, C.F.; Wang, J. MLP-BP: A novel framework for cuffless blood pressure measurement with PPG and ECG signals based on MLP-Mixer neural networks. Biomed. Signal Process. Control 2022, 73, 103404. [Google Scholar] [CrossRef]
Parameter Name | Pedestrian Parameters | Vehicle Parameters |
---|---|---|
Average speed | 1.4 m/s | 8.3 m/s |
Max speed | 2.0 m/s | 13.9 m/s |
Max acceleration | 0.3 m/s | 3 m/s |
Max direction change | 10 | 5 |
Probability of change | [0.8, 0.1, 0.05, 0.05] | [0.8, 0.02, 0.05, 0.13] |
Noise Level () | MAE (m) | 95th Percentile (m) | 50th Percentile (m) |
---|---|---|---|
2 dB | 1.568 | 3.793 | 1.126 |
4 dB | 1.660 | 3.898 | 1.219 |
6 dB | 1.708 | 3.959 | 1.275 |
10 dB | 1.772 | 4.038 | 1.411 |
Method (Year) | MAE (m) ↓ | 95th Percentile (m) ↓ |
---|---|---|
[15]-TCN (2020) | 2.03 | 5.81 |
[31]-CNN (2020) | 5.38 | 13.66 |
[31]-LSTM (2020) | 2.09 | 5.06 |
[31]-TCN (2020) | 1.78 | 4.13 |
[13] (2021) | 2.56 | 7.02 |
This work (MLP-mmWP) | 1.57 (11.8%) | 3.79 (8.2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Huang, B.; Lu, Z. MLP-mmWP: High-Precision Millimeter Wave Positioning Based on MLP-Mixer Neural Networks. Sensors 2023, 23, 3864. https://doi.org/10.3390/s23083864
Zheng Y, Huang B, Lu Z. MLP-mmWP: High-Precision Millimeter Wave Positioning Based on MLP-Mixer Neural Networks. Sensors. 2023; 23(8):3864. https://doi.org/10.3390/s23083864
Chicago/Turabian StyleZheng, Yadan, Bin Huang, and Zhiping Lu. 2023. "MLP-mmWP: High-Precision Millimeter Wave Positioning Based on MLP-Mixer Neural Networks" Sensors 23, no. 8: 3864. https://doi.org/10.3390/s23083864
APA StyleZheng, Y., Huang, B., & Lu, Z. (2023). MLP-mmWP: High-Precision Millimeter Wave Positioning Based on MLP-Mixer Neural Networks. Sensors, 23(8), 3864. https://doi.org/10.3390/s23083864