Symmetry of the Neck Muscles’ Activity in the Electromyography Signal during Basic Motion Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol and EMG Data Acquisition
2.3. EMG Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Baseline Muscle Activity and Its Symmetry
3.2. Muscle Activity during Motions
3.2.1. Right and Left Arc Motions
3.2.2. Bottom and Upper Arc Motions
3.2.3. Rotation and Extension–Flexion Motions
3.3. Symmetry of Muscle Activity during Motions
3.4. Comparison of the Muscle Activity and SI between Motions
3.4.1. Upper Trapezius Activity
3.4.2. Sternocleidomastoid Muscle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kielnar, R.; Oleksy, Ł.; Grzegorczyk, J. Paraspinal bioelectrical muscle activity differentiation with surface EMG in active seniors. Med. Rehabil. 2012, 16, 9–15. [Google Scholar]
- Dwornik, M.; Kujawa, J.; Białoszewski, D.; Słupik, A.; Kiebzak, W. Electromyographic and clinical evaluation of the efficacy of neuromobilization in patients with low back pain. Ortop. Traumatol. Rehabil. 2009, 11, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Al-Qaisi, S.; Aghazadeh, F. Electromyography Analysis: Comparison of Maximum Voluntary Contraction Methods for Anterior Deltoid and Trapezius Muscles. Procedia Manuf. 2015, 3, 4578–4583. [Google Scholar] [CrossRef]
- Błażkiewicz, M.; Hadamus, A. The Effect of the Weight and Type of Equipment on Shoulder and Back Muscle Activity in Surface Electromyography during the Overhead Press - Preliminary Report. Sensors 2022, 22, 9762. [Google Scholar] [CrossRef]
- Besomi, M.; Hodges, P.W.; Clancy, E.A.; Van Dieën, J.; Hug, F.; Lowery, M.; Merletti, R.; Søgaard, K.; Wrigley, T.; Besier, T.; et al. Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization matrix. J. Electromyogr. Kinesiol. 2020, 53, 102438. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hägg, G. European Recommendations for Surface ElectroMyoGraphy. In Results of the SENIAM Project; Roessingh Research and Development: Enschede, The Netherlands, 1999. [Google Scholar]
- Brage, K.; Ris, I.; Falla, D.; Søgaard, K.; Juul-Kristensen, B. Pain education combined with neck- and aerobic training is more effective at relieving chronic neck pain than pain education alone—A preliminary randomized controlled trial. Man. Ther. 2015, 20, 686–693. [Google Scholar] [CrossRef]
- Pinheiro, C.F.; dos Santos, M.F.; Chaves, T.C. Flexion–relaxation ratio in computer workers with and without chronic neck pain. J. Electromyogr. Kinesiol. 2016, 26, 8–17. [Google Scholar] [CrossRef]
- Kumar, S.; Narayan, Y.; Amell, T. Spectral profile of superficial cervical muscles. J. Electromyogr. Kinesiol. 2001, 11, 269–280. [Google Scholar] [CrossRef]
- Silawal, S.; Schulze-Tanzil, G. The sternocleidomastoid muscle variations: A mini literature review. Folia Morphol. 2022. ahead of print. [Google Scholar] [CrossRef]
- Lavallee, A.V.; Ching, R.P.; Nuckley, D.J. Developmental biomechanics of neck musculature. J. Biomech. 2013, 46, 527–534. [Google Scholar] [CrossRef]
- Röijezon, U.; Jull, G.; Djupsjöbacka, M.; Salomoni, S.E.; Hodges, P.W. Deep and superficial cervical muscles respond differently to unstable motor skill tasks. Hum. Mov. Sci. 2021, 80, 102893. [Google Scholar] [CrossRef] [PubMed]
- Falla, D.; Bilenkij, G.; Jull, G. Patients with chronic neck pain demonstrate altered patterns of muscle activation during performance of a functional upper limb task. Spine 2004, 29, 1436–1440. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, J.H. Effects of sternocleidomastoid muscle and suboccipital muscle soft tissue release on muscle hardness and pressure pain of the sternocleidomastoid muscle and upper trapezius muscle in smartphone users with latent trigger points. Medicine 2018, 97, e12133. [Google Scholar] [CrossRef] [PubMed]
- Yajima, H.; Nobe, R.; Takayama, M.; Takakura, N. The Mode of Activity of Cervical Extensors and Flexors in Healthy Adults: A Cross-Sectional Study. Medicina 2022, 58, 728. [Google Scholar] [CrossRef]
- Chahal, R.; Kumar, P. Alteration in Activation Pattern of Neck Muscles in Patients with Chronic Neck Pain. International J. Head Neck Surg. 2015, 6, 1–7. [Google Scholar] [CrossRef]
- Homayounpour, M.; Gomez, N.G.; Vasavada, A.N.; Merryweather, A.S. The role of neck muscle co-contraction and postural changes in head kinematics after safe head impacts: Investigation of head/neck injury reduction. J. Biomech. 2021, 128, 110732. [Google Scholar] [CrossRef]
- Sheikhhoseini, R.; Shahrbanian, S.; Sayyadi, P.; O’Sullivan, K. Effectiveness of Therapeutic Exercise on Forward Head Posture: A Systematic Review and Meta-analysis. J. Manip. Physiol. Ther. 2018, 41, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Barrey, C.; Roussouly, P.; Le Huec, J.-C.; D’Acunzi, G.; Perrin, G. Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur. Spine J. 2013, 22, 834–841. [Google Scholar] [CrossRef]
- Kocur, P.; Grzeskowiak, M.; Wiernicka, M.; Goliwas, M.; Lewandowski, J.; Łochyński, D. Effects of aging on mechanical properties of sternocleidomastoid and trapezius muscles during transition from lying to sitting position—A cross-sectional study. Arch. Gerontol. Geriatr. 2017, 70, 14–18. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Alonso-Blanco, C.; Cuadrado, M.L.; Gerwin, R.D.; Pareja, J.A. Trigger Points in the Suboccipital Muscles and Forward Head Posture in Tension-Type Headache. Headache J. Head Face Pain 2006, 46, 454–460. [Google Scholar] [CrossRef]
- Lee, K.-J.; Han, H.-Y.; Cheon, S.-H.; Park, S.-H.; Yong, M.-S. The effect of forward head posture on muscle activity during neck protraction and retraction. J. Phys. Ther. Sci. 2015, 27, 977–979. [Google Scholar] [CrossRef]
- Kim, M.-S. Neck kinematics and sternocleidomastoid muscle activation during neck rotation in subjects with forward head posture. J. Phys. Ther. Sci. 2015, 27, 3425–3428. [Google Scholar] [CrossRef] [PubMed]
- Gooyers, C.E.; Beach, T.A.C.; Frost, D.M.; Howarth, S.J.; Callaghan, J.P. Identifying interactive effects of task demands in lifting on estimates of in vivo low back joint loads. Appl. Ergon. 2018, 67, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Kuriyama, N.; Ito, H. Electromyographic functional analysis of the lumbar spinal muscles with low back pain. J. Nippon. Med Sch. 2005, 72, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Wiaderna, K.; Selegrat, M.; Hadamus, A. Effect of a Single Session of Facial Distortion Model Manual Physiotherapy and a Selected Foam Rolling Technique on Treatment Outcomes in Cervical Spine Overload. Pilot Study. Ortop. Traumatol. Rehabil. 2020, 22, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Błażkiewicz, M.; Wiszomirska, I.; Wit, A. Comparison of four methods of calculating the symmetry of spatial-temporal parameters of gait. Acta Bioeng. Biomech. 2014, 16, 29–35. [Google Scholar] [PubMed]
- Sung, P.S.; O’Sullivan, E.; Park, M.S. The reaction times and symmetry indices in the bilateral trunk and limb muscles in control subjects and subjects with low back pain that persisted two months or longer. Eur. Spine J. 2021, 30, 2975–2982. [Google Scholar] [CrossRef]
- Villanueva, M.B.; Jonai, H.; Sotoyama, M.; Hisanaga, N.; Takeuchi, Y.; Saito, S. Sitting posture and neck and shoulder muscle activities at different screen height settings of the visual display terminal. Ind. Health 1997, 35, 330–336. [Google Scholar] [CrossRef]
- Khan, A.; Khan, Z.; Bhati, P.; Hussain, M.E. Influence of Forward Head Posture on Cervicocephalic Kinesthesia and Electromyographic Activity of Neck Musculature in Asymptomatic Individuals. J. Chiropr. Med. 2020, 19, 230–240. [Google Scholar] [CrossRef]
- Straker, L.M.; Mekhora, K. An evaluation of visual display unit placement by electromyography, posture, discomfort and preference. Int. J. Ind. Ergon. 2000, 26, 389–398. [Google Scholar] [CrossRef]
- Edmondston, S.J.; Sharp, M.; Symes, A.; Alhabib, N.; Allison, G.T. Changes in mechanical load and extensor muscle activity in the cervico-thoracic spine induced by sitting posture modification. Ergonomics 2011, 54, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Arshadi, R.; Ghasemi, G.A.; Samadi, H. Effects of an 8-week selective corrective exercises program on electromyography activity of scapular and neck muscles in persons with upper crossed syndrome: Randomized controlled trial. Phys. Ther. Sport 2019, 37, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Kazeminasab, S.; Nejadghaderi, S.A.; Amiri, P.; Pourfathi, H.; Araj-Khodaei, M.; Sullman, M.J.M.; Kolahi, A.-A.; Safiri, S. Neck pain: Global epidemiology, trends and risk factors. BMC Musculoskelet. Disord. 2022, 23, 26. [Google Scholar] [CrossRef] [PubMed]
- Luedtke, K.; Mehnert, J.; May, A. Altered muscle activity during rest and during mental or physical activity is not a trait symptom of migraine—A neck muscle EMG study. J. Headache Pain 2018, 19, 26. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, B. Effects of hanger reflex on the cervical muscular activation and function: A surface electromyography assessment. Front. Physiol. 2022, 13, 1006179. [Google Scholar] [CrossRef] [PubMed]
- Błaszczyk, A.; Ogurkowska, M.B. The use of electromyography and kinematic measurements of the lumbar spine during ergonomic intervention among workers of the production line of a foundry. PeerJ 2022, 10, e13072. [Google Scholar] [CrossRef]
- Bartuzi, P.; Tokarski, T.; Roman-Liu, D. The effect of the fatty tissue on EMG signal in young women. Acta Bioeng. Biomech. 2010, 12, 87–92. [Google Scholar]
Group | Age (Years) (Mean ± SD) | Body Mass (kg) (Mean ± SD) | Body Height (cm) (Mean ± SD) | Body Mass Index (kg/m2) (mean ± SD) | Neck Disability Index (Points) (Median, Quartiles Q1 and Q3) |
---|---|---|---|---|---|
N = 18 (9 males, 9 females) | 42.5 ± 13.3 | 76.9 ± 15.9 | 173.5 ± 10.5 | 25.4 ± 3.8 | 2.0 Q1 = 1, Q3 = 4 |
Motion | Left UT [% MVC] | Right UT [% MVC] | Left SCM [% MVC] | Right SCM [% MVC] | p-Value |
---|---|---|---|---|---|
Right arc | 46.30 ± 16.35 | 30.10 ± 16.26 | 39.39 ± 24.35 | 17.35 ± 18.03 | Left UT-Right UT, p = 0.0035 T Left SCM-Right SCM, p = 0.0249 W |
Left arc | 34.03 ± 13.25 | 40.99 ± 20.35 | 19.98 ± 15.14 | 31.50 ± 17.21 | - |
Bottom arc | 44.07 ± 16.55 | 33.26 ± 21.03 | 53.21 ± 25.01 | 28.43 ± 23.89 | Left SCM-Right SCM, p = 0.0295 T |
Upper arc | 34.06 ± 15.60 | 39.02 ± 20.64 | 30.69 ± 18.08 | 44.10 ± 23.70 | - |
Rotation | 49.08 ± 16.96 | 42.88 ± 25.88 | 40.53 ± 23.83 | 21.91 ± 13.01 | Left SCM-Right SCM, p = 0.0311 W |
Extension- flexion | 51.87 ± 20.12 | 42.21 ± 18.51 | 27.43 ± 10.98 | 29.78 ± 23.34 | - |
Motion | SI–UT | SI–SCM | ; p-Value |
---|---|---|---|
Right arc | 50.07 ± 52.20 | 116.19 ± 55.07 | 132%; 0.0006 * |
Left arc | 54.19 ± 40.90 | 85.46 ± 41.38 | 57.7%; 0.0480 * |
Bottom arc | 55.47 ± 50.87 | 107.37 ± 55.65 | 93.54%; 0.0152 * |
Upper arc | 50.53 ± 39.27 | 62.36 ± 46.92 | 23.40%; 0.4112 |
Rotation | 51.46 ± 43.05 | 96.17 ± 50.04 | 86.88%; 0.0132 * |
Extension-flexion | 41.75 ± 27.00 | 72.14 ± 41.18 | 72.76%; 0.0306 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figas, G.; Hadamus, A.; Błażkiewicz, M.; Kujawa, J. Symmetry of the Neck Muscles’ Activity in the Electromyography Signal during Basic Motion Patterns. Sensors 2023, 23, 4170. https://doi.org/10.3390/s23084170
Figas G, Hadamus A, Błażkiewicz M, Kujawa J. Symmetry of the Neck Muscles’ Activity in the Electromyography Signal during Basic Motion Patterns. Sensors. 2023; 23(8):4170. https://doi.org/10.3390/s23084170
Chicago/Turabian StyleFigas, Gabriela, Anna Hadamus, Michalina Błażkiewicz, and Jolanta Kujawa. 2023. "Symmetry of the Neck Muscles’ Activity in the Electromyography Signal during Basic Motion Patterns" Sensors 23, no. 8: 4170. https://doi.org/10.3390/s23084170