Extended Application of Inertial Measurement Units in Biomechanics: From Activity Recognition to Force Estimation
Abstract
:1. Introduction
2. IMU Sensor Placement and Data Acquisition and Processing
2.1. IMU Sensor Placement for Kinematics and Kinetics Assessments
2.2. Data Acquisition
2.3. Data Pre-Processing
Reference | Selected Features |
---|---|
(De Brabandere et al., 2020) [5] | 63 features generated using TSFuse (e.g., mean, median, variance, …) |
(Lee, M. and Park, 2020) [9] | Position velocity and acceleration of the sacrum |
(Barua et al., 2021) [12] | L2 norm and average were extracted from each accelerometer and gyroscope sensor (three axes combinedly) |
(Alcantara et al., 2022) [14] | Mean, standard deviation, and range in vertical and anteroposterior acceleration data for each 12 ms window |
(Derie et al., 2020) [66] | Mean, maximum, number of peaks, timing of peak values, continuous wavelet coefficients, coefficients of an autoregressive model, the time reversal symmetry statistic, Fourier coefficients |
(Jiang, Napier, Hannigan, Eng, and Menon, 2020) [98] | Temporal domain features were employed, including root mean square, sum of absolute value, mean absolute deviation, variance, wavelength, slope sign changes, and simple square integral, mean wavelet with db7, difference absolute standard deviation value, average amplitude change, log detector, and the coefficients of linear fit and parabolic fit |
(Jiang et al., 2019) [65] | Root mean square, sum of absolute value, mean absolute deviation, variance, wavelength, slope sign changes, simple square integral, mean wavelet with db7, difference absolute standard deviation value, average amplitude change, log detector, linear fit, and parabolic fit |
(Zhu et al., 2023) [57] | PCA |
(Alemayoh et al., 2021) [21] | Time-domain, frequency-domain, and wavelet transformation |
(Barshan and Yüksek, 2014) [36] | The minimum and maximum values, the mean value, variance, skewness, kurtosis, autocorrelation sequence, and the peaks of the discrete Fourier transform |
(Fullerton et al., 2017) [49] | Time-domain features: mean, standard deviation, root mean square, peak count, and peak amplitude Frequency-domain features: spectral energy and spectral power Heuristic features: signal magnitude area, signal vector magnitude |
(Pei et al., 2013) [39] | Mean, variance, median, interquartile range, skewness, kurtosis, difference in two successive measurements, 1st dominant frequency, 2nd dominant frequency, amplitude of the 1st dominant frequency, amplitude of the 2nd dominant frequency, amplitude scale of two dominant frequencies, difference between two dominant frequencies |
(Y. Liu et al., 2016) [40] | Statistical domain: mean, variance, STD, median, min, max, range, interquartile range, kurtosis, skewness Frequency domain: spectrum peak position |
(Reyes-Ortiz et al., 2016) [44] | Arithmetic mean, standard deviation, median absolute deviation, largest values in array, smallest value in array, frequency signal skewness, frequency signal kurtosis, largest frequency component, average sum of the squares, signal magnitude area, signal entropy, interquartile range, 4th order burg autoregression coefficients, Pearson correlation coefficient, frequency signal weighted average, spectral energy of a frequency band [a, b], angle between signal mean and vector |
(Ma et al., 2019) [46] | Spectrogram |
3. Activity Recognition Based on IMUs
3.1. Classification Models
3.2. Application of the IMU-Based HAR in Clinical and Daily Scenarios
4. Estimation of Musculoskeletal Force Using IMUs
4.1. Estimation of Musculoskeletal Force Using IMUs
4.2. Estimation of Joint Force and Moment of Lower Limb Based on IMUs
4.3. Clinical Application of IMU-Based Data Analysis Approaches
5. Discussion, Challenges, and Outlook
5.1. Discussion of Reviewed IMU-Based Systems
5.1.1. Data Recording, Quantity and Placement of IMUs
5.1.2. Potential of IMUs for HAR and Force Estimation
5.2. Challenges and Opportunities for Implementation of the Deep Learning Method in IMU-Based Systems
5.2.1. Dataset for Deep Learning Methods
5.2.2. Development of Novel Deep Learning Models
5.3. Outlook
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nweke, H.F.; Teh, Y.W.; Mujtaba, G.; Al-garadi, M.A. Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions. Inf. Fusion 2019, 46, 147–170. [Google Scholar] [CrossRef]
- Xu, T.; Zhou, Y.; Zhu, J. New Advances and Challenges of Fall Detection Systems: A Survey. Appl. Sci. 2018, 8, 418. [Google Scholar] [CrossRef]
- Masoud, M.; Jaradat, Y.; Manasrah, A.; Jannoud, I. Sensors of Smart Devices in the Internet of Everything (IoE) Era: Big Opportunities and Massive Doubts. J. Sens. 2019, 2019, 6514520. [Google Scholar] [CrossRef]
- Stetter, B.J.; Krafft, F.C.; Ringhof, S.; Stein, T.; Sell, S. A Machine Learning and Wearable Sensor Based Approach to Estimate External Knee Flexion and Adduction Moments During Various Locomotion Tasks. Front. Bioeng. Biotechnol. 2020, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- De Brabandere, A.; Emmerzaal, J.; Timmermans, A.; Jonkers, I.; Vanwanseele, B.; Davis, J. A Machine Learning Approach to Estimate Hip and Knee Joint Loading Using a Mobile Phone-Embedded IMU. Front. Bioeng. Biotechnol. 2020, 8, 320. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Deng, J.; Zha, F.; Qiu, S.; Wang, X.; Chen, F. Towards Online Estimation of Human Joint Muscular Torque with a Lower Limb Exoskeleton Robot. Appl. Sci. 2018, 8, 1610. [Google Scholar] [CrossRef]
- Yi, C.; Zhang, S.; Jiang, F.; Liu, J.; Ding, Z.; Yang, C.; Zhou, H. Enable Fully Customized Assistance: A Novel IMU-based Motor Intent Decoding Scheme. In IEEE Transactions on Cognitive and Developmental Systems; IEEE: Piscataway, NJ, USA, 2021; p. 1. [Google Scholar]
- Johnson, W.R.; Mian, A.; Robinson, M.A.; Verheul, J.; Lloyd, D.G.; Alderson, J.A. Multidimensional Ground Reaction Forces and Moments from Wearable Sensor Accelerations via Deep Learning. IEEE Trans. Biomed. Eng. 2021, 68, 289–297. [Google Scholar] [CrossRef]
- Lee, M.; Park, S. Estimation of Three-Dimensional Lower Limb Kinetics Data during Walking Using Machine Learning from a Single IMU Attached to the Sacrum. Sensors 2020, 20, 6277. [Google Scholar] [CrossRef]
- Dorschky, E.; Nitschke, M.; Martindale, C.F.; van den Bogert, A.J.; Koelewijn, A.D.; Eskofier, B.M. CNN-Based Estimation of Sagittal Plane Walking and Running Biomechanics from Measured and Simulated Inertial Sensor Data. Front. Bioeng. Biotechnol. 2020, 8, 604. [Google Scholar] [CrossRef]
- Mundt, M.; Koeppe, A.; David, S.; Witter, T.; Bamer, F.; Potthast, W.; Markert, B. Estimation of Gait Mechanics Based on Simulated and Measured IMU Data Using an Artificial Neural Network. Front. Bioeng. Biotechnol. 2020, 8, 41. [Google Scholar] [CrossRef]
- Barua, A.; Zakia, U.; Menon, C.; Jiang, X. Deep Learning Techniques in Estimating Ankle Joint Power Using Wearable IMUs. IEEE Access 2021, 9, 83041–83054. [Google Scholar] [CrossRef]
- Mundt, M.; Johnson, W.R.; Potthast, W.; Markert, B.; Mian, A.; Alderson, J. A Comparison of Three Neural Network Approaches for Estimating Joint Angles and Moments from Inertial Measurement Units. Sensors 2021, 21, 4535. [Google Scholar] [CrossRef] [PubMed]
- Alcantara, R.S.; Edwards, W.B.; Millet, G.Y.; Grabowski, A.M. Predicting continuous ground reaction forces from accelerometers during uphill and downhill running: A recurrent neural network solution. PeerJ 2022, 10, e12752. [Google Scholar] [CrossRef] [PubMed]
- Iosa, M.; Picerno, P.; Paolucci, S.; Morone, G. Wearable inertial sensors for human movement analysis. Expert Rev. Med. Devices 2016, 13, 641–659. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Kim, B.; Park, S. Prediction of Lower Limb Kinetics and Kinematics during Walking by a Single IMU on the Lower Back Using Machine Learning. Sensors 2019, 20, 130. [Google Scholar] [CrossRef] [PubMed]
- Vienne-Jumeau, A.; Barrois, R.; Buffat, S.; Ricard, D.; Vidal, P.-P. Inertial Sensors to Assess Gait Quality in Patients with Neurological Disorders: A Systematic Review of Technical and Analytical Challenges. Front. Psychol. 2017, 8, 817. [Google Scholar] [CrossRef]
- Clemente, F.M.; Akyildiz, Z.; Pino-Ortega, J.; Rico-González, M. Validity and Reliability of the Inertial Measurement Unit for Barbell Velocity Assessments: A Systematic Review. Sensors 2021, 21, 2511. [Google Scholar] [CrossRef]
- Yang, J.B.; Nguyen, M.N.; San, P.P.; Li, X.L.; Krishnaswamy, S. Deep convolutional neural networks on multichannel time series for human activity recognition. In Proceedings of the 24th International Conference on Artificial Intelligence; AAAI Press: Buenos Aires, Argentina, 2015; pp. 3995–4001. [Google Scholar]
- Huang, J.; Lin, S.; Wang, N.; Dai, G.; Xie, Y.; Zhou, J. TSE-CNN: A Two-Stage End-to-End CNN for Human Activity Recognition. IEEE J. Biomed. Health Inform. 2020, 24, 292–299. [Google Scholar] [CrossRef]
- Alemayoh, T.T.; Lee, J.H.; Okamoto, S. New Sensor Data Structuring for Deeper Feature Extraction in Human Activity Recognition. Sensors 2021, 21, 2814. [Google Scholar] [CrossRef]
- Steven Eyobu, O.; Han, D.S. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network. Sensors 2018, 18, 2892. [Google Scholar] [CrossRef]
- Ullah, M.; Ullah, H.; Khan, S.D.; Cheikh, F.A. Stacked Lstm Network for Human Activity Recognition Using Smartphone Data. In Proceedings of the 2019 8th European Workshop on Visual Information Processing (EUVIP), Rome, Italy, 28–31 October 2019; pp. 175–180. [Google Scholar]
- Mahmud, S.; Tonmoy, M.T.H.; Bhaumik, K.; Rahman, A.; Amin, M.A.; Shoyaib, M.; Khan, M.; Ali, A. Human Activity Recognition from Wearable Sensor Data Using Self-Attention. arXiv 2020, arXiv:2003.09018. [Google Scholar]
- Abdel-Basset, M.; Hawash, H.; Chakrabortty, R.K.; Ryan, M.; Elhoseny, M.; Song, H. ST-DeepHAR: Deep Learning Model for Human Activity Recognition in IoHT Applications. IEEE Internet Things 2021, 8, 4969–4979. [Google Scholar] [CrossRef]
- Haresamudram, H.K.; Beedu, A.; Agrawal, V.; Grady, P.; Essa, I.; Hoffman, J.; Plötz, T. Masked reconstruction based self-supervision for human activity recognition. In Proceedings of the 2020 ACM International Symposium on Wearable Computers, Virtual, 12–16 September 2020. [Google Scholar]
- Kim, S.J.; Gu, G.M.; Na, Y.; Park, J.; Kim, Y.; Kim, J. Wireless Ground Reaction Force Sensing System Using a Mechanically Decoupled Two-Dimensional Force Sensor. IEEE/ASME Trans. Mechatron. 2020, 25, 66–75. [Google Scholar] [CrossRef]
- Ren, L.; Jones, R.K.; Howard, D. Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. J. Biomech. 2008, 41, 2750–2759. [Google Scholar] [CrossRef] [PubMed]
- Durandau, G.; Farina, D.; Sartori, M. Robust Real-Time Musculoskeletal Modeling Driven by Electromyograms. IEEE Trans. Biomed. Eng. 2018, 65, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Ancillao, A.; Tedesco, S.; Barton, J.; O’Flynn, B. Indirect Measurement of Ground Reaction Forces and Moments by Means of Wearable Inertial Sensors: A Systematic Review. Sensors 2018, 18, 2564. [Google Scholar] [CrossRef]
- Gurchiek, R.D.; Cheney, N.; McGinnis, R.S. Estimating Biomechanical Time-Series with Wearable Sensors: A Systematic Review of Machine Learning Techniques. Sensors 2019, 19, 5227. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Lee, J.K. Inertial Motion Capture-Based Wearable Systems for Estimation of Joint Kinetics: A Systematic Review. Sensors 2022, 22, 2507. [Google Scholar] [CrossRef]
- Rezaie, H.; Ghassemian, M. An Adaptive Algorithm to Improve Energy Efficiency in Wearable Activity Recognition Systems. IEEE Sens. J. 2017, 17, 5315–5323. [Google Scholar] [CrossRef]
- Safi, K.; Attal, F.; Mohammed, S.; Khalil, M.; Amirat, Y. Physical Activity Recognition Using Inertial Wearable Sensors—A Review of Supervised Classification Algorithms. In Proceedings of the 2015 International Conference on Advances in Biomedical Engineering (ICABME), Beirut, Lebanon, 16–18 September 2015; pp. 313–316. [Google Scholar]
- Martinez-Hernandez, U.; Dehghani-Sanij, A.A. Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors. Neural Netw. 2018, 102, 107–119. [Google Scholar] [CrossRef]
- Barshan, B.; Yüksek, M.C. Recognizing Daily and Sports Activities in Two Open Source Machine Learning Environments Using Body-Worn Sensor Units. Comput. J. 2014, 57, 1649–1667. [Google Scholar] [CrossRef]
- Liu, S.; Yao, S.; Li, J.; Liu, D.; Wang, T.; Shao, H.; Abdelzaher, T. GIobalFusion: A Global Attentional Deep Learning Framework for Multisensor Information Fusion. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 19. [Google Scholar] [CrossRef]
- Yao, S.; Hu, S.; Zhao, Y.; Zhang, A.; Abdelzaher, T. DeepSense: A Unified Deep Learning Framework for Time-Series Mobile Sensing Data Processing. In Proceedings of the 26th International Conference on World Wide Web, International World Wide Web, Perth, Australia, 3–7 April 2017; pp. 351–360. [Google Scholar]
- Pei, L.; Guinness, R.; Chen, R.; Liu, J.; Kuusniemi, H.; Chen, Y.; Chen, L.; Kaistinen, J. Human Behavior Cognition Using Smartphone Sensors. Sensors 2013, 13, 1402–1424. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, F.; Shao, W.; Luo, H. In An Hidden Markov Model Based Complex Walking Pattern Recognition Algorithm. In Proceedings of the 2016 Fourth International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services (UPINLBS), Shanghai, China, 2–4 November 2016; pp. 223–229. [Google Scholar]
- Ignatov, A. Real-time human activity recognition from accelerometer data using Convolutional Neural Networks. Appl. Soft Comput. 2018, 62, 915–922. [Google Scholar] [CrossRef]
- Chen, Y.; Zhong, K.; Zhang, J.; Sun, Q.; Zhao, X. LSTM Networks for Mobile Human Activity Recognition. In Proceedings of the 2016 International Conference on Artificial Intelligence: Technologies and Applications, Bangkok, Thailand, 24–25 January 2016. [Google Scholar]
- Zhao, Y.; Yang, R.; Chevalier, G.; Xu, X.; Zhang, Z. Deep Residual Bidir-LSTM for Human Activity Recognition Using Wearable Sensors. Math. Probl. Eng. 2018, 2018, 7316954. [Google Scholar] [CrossRef]
- Reyes-Ortiz, J.-L.; Oneto, L.; Samà, A.; Parra, X.; Anguita, D. Transition-Aware Human Activity Recognition Using Smartphones. Neurocomputing 2016, 171, 754–767. [Google Scholar] [CrossRef]
- Mekruksavanich, S.; Jitpattanakul, A. Deep Convolutional Neural Network with RNNs for Complex Activity Recognition Using Wrist-Worn Wearable Sensor Data. Electronics 2021, 10, 1685. [Google Scholar] [CrossRef]
- Ma, H.; Li, W.; Zhang, X.; Gao, S.; Lu, S. AttnSense: Multi-level attention mechanism for multimodal human activity recognition. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 3109–3115. [Google Scholar]
- Ordóñez, F.J.; Roggen, D. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef]
- Abedin, A.; Ehsanpour, M.; Shi, Q.; Rezatofighi, H.; Ranasinghe, D. Attend and Discriminate: Beyond the State-of-the-Art for Human Activity Recognition Using Wearable Sensors. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–22. [Google Scholar] [CrossRef]
- Fullerton, E.; Heller, B.; Munoz-Organero, M. Recognizing Human Activity in Free-Living Using Multiple Body-Worn Accelerometers. IEEE Sens. J. 2017, 17, 5290–5297. [Google Scholar] [CrossRef]
- Guan, Y.; Ploetz, T. Ensembles of Deep LSTM Learners for Activity Recognition using Wearables. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 1–28. [Google Scholar] [CrossRef]
- Zeng, M.; Gao, H.; Yu, T.; Mengshoel, O.J.; Langseth, H.; Lane, I.; Liu, X. Understanding and Improving Recurrent Networks for Human Activity Recognition by Continuous Attention. In Proceedings of the 2018 ACM International Symposium on Wearable Computers, Singapore, 8–12 October 2018; pp. 56–63. [Google Scholar]
- Staab, S.; Krissel, S.; Luderschmidt, J.; Martin, L. Recognition Models for Distribution and Out-of-Distribution of Human Activities. In Proceedings of the 2022 18th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Thessaloniki, Greece, 10–12 October 2022; pp. 6–12. [Google Scholar]
- Staab, S.; Bröning, L.; Luderschmidt, J.; Martin, L. Automated documentation of almost identical movements in the context of dementia diagnostics. Smart Health 2022, 26, 100333. [Google Scholar] [CrossRef]
- Hassemer, M.; Cudjoe, E.; Dohn, J.; Kredel, C.; Lietz, Y.; Luderschmidt, J.; Mohr, L.; Staab, S. In Recognition of Similar Habits Using Smartwatches and Supervised Learning. In Intelligent Systems and Applications; Arai, K., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 705–723. [Google Scholar]
- Staab, S.; Luderschmidt, J.; Martin, L. Recognition of Usual Similar Activities of Dementia Patients via Smartwatches Using Supervised Learning. In Proceedings of the 2021 IEEE International Conference on Progress in Informatics and Computing (PIC), Shanghai, China, 17–19 December 2021; pp. 397–402. [Google Scholar]
- Wouda, F.J.; Giuberti, M.; Bellusci, G.; Maartens, E.; Reenalda, J.; van Beijnum, B.F.; Veltink, P.H. Estimation of Vertical Ground Reaction Forces and Sagittal Knee Kinematics During Running Using Three Inertial Sensors. Front. Physiol. 2018, 9, 218. [Google Scholar] [CrossRef]
- Zhu, Y.; Xia, D.; Zhang, H. Using Wearable Sensors to Estimate Vertical Ground Reaction Force Based on a Transformer. Appl. Sci. 2023, 13, 2136. [Google Scholar] [CrossRef]
- Guo, Y.; Storm, F.; Zhao, Y.; Billings, S.A.; Pavic, A.; Mazzà, C.; Guo, L.-Z. A New Proxy Measurement Algorithm with Application to the Estimation of Vertical Ground Reaction Forces Using Wearable Sensors. Sensors 2017, 17, 2181. [Google Scholar] [CrossRef] [PubMed]
- Shahabpoor, E.; Pavic, A.; Brownjohn, J.M.W.; Billings, S.A.; Guo, L.Z.; Bocian, M. Real-Life Measurement of Tri-Axial Walking Ground Reaction Forces Using Optimal Network of Wearable Inertial Measurement Units. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1243–1253. [Google Scholar] [CrossRef]
- Chaaban, C.R.; Berry, N.T.; Armitano-Lago, C.; Kiefer, A.W.; Mazzoleni, M.J.; Padua, D.A. Combining Inertial Sensors and Machine Learning to Predict vGRF and Knee Biomechanics during a Double Limb Jump Landing Task. Sensors 2021, 21, 4383. [Google Scholar] [CrossRef]
- Molinaro, D.D.; Kang, I.; Camargo, J.; Gombolay, M.C.; Young, A.J. Subject-Independent, Biological Hip Moment Estimation During Multimodal Overground Ambulation Using Deep Learning. IEEE Trans. Med. Robot. Bionics 2022, 4, 219–229. [Google Scholar] [CrossRef]
- Stetter, B.J.; Ringhof, S.; Krafft, F.C.; Sell, S.; Stein, T. Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning. Sensors 2019, 19, 3690. [Google Scholar] [CrossRef]
- Hossain, M.S.B.; Guo, Z.; Choi, H. Estimation of Lower Extremity Joint Moments and 3D Ground Reaction Forces Using IMU Sensors in Multiple Walking Conditions: A Deep Learning Approach. IEEE J. Biomed. Health Inform. 2023, 1–12. [Google Scholar] [CrossRef]
- Tedesco, S.; Alfieri, D.; Perez-Valero, E.; Komaris, D.-S.; Jordan, L.; Belcastro, M.; Barton, J.; Hennessy, L.; O’Flynn, B. A Wearable System for the Estimation of Performance-Related Metrics during Running and Jumping Tasks. Appl. Sci. 2021, 11, 5258. [Google Scholar] [CrossRef]
- Jiang, X.; Gholami, M.; Khoshnam, M.; Eng, J.J.; Menon, C. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors. Sensors 2019, 19, 2796. [Google Scholar] [CrossRef] [PubMed]
- Derie, R.; Robberechts, P.; Van den Berghe, P.; Gerlo, J.; De Clercq, D.; Segers, V.; Davis, J. Tibial Acceleration-Based Prediction of Maximal Vertical Loading Rate During Overground Running: A Machine Learning Approach. Front. Bioeng. Biotechnol. 2020, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hu, W.; Yang, Y.; Hou, J.; Wang, Z. A method to calibrate installation orientation errors of inertial sensors for gait analysis. In Proceedings of the 2014 IEEE International Conference on Information and Automation (ICIA), Hailar, China, 28–30 July 2014; pp. 598–603. [Google Scholar]
- Tan, T.; Strout, Z.A.; Shull, P.B. Accurate Impact Loading Rate Estimation During Running via a Subject-Independent Convolutional Neural Network Model and Optimal IMU Placement. IEEE J. Biomed. Health Inform. 2021, 25, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Cheung, R.T.H.; Zhang, J.H.; Chan, Z.Y.S.; An, W.W.; Au, I.P.H.; MacPhail, A.; Davis, I.S. Shoe-mounted accelerometers should be used with caution in gait retraining. Scand. J. Med. Sci. Sport. 2019, 29, 835–842. [Google Scholar] [CrossRef]
- Banos, O.; Toth, M.A.; Damas, M.; Pomares, H.; Rojas, I. Dealing with the Effects of Sensor Displacement in Wearable Activity Recognition. Sensors 2014, 14, 9995–10023. [Google Scholar] [CrossRef]
- Kunze, K.; Lukowicz, P. Sensor Placement Variations in Wearable Activity Recognition. IEEE Pervasive Comput. 2014, 13, 32–41. [Google Scholar] [CrossRef]
- Yurtman, A.; Barshan, B. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors. Sensors 2017, 17, 1838. [Google Scholar] [CrossRef]
- Tan, T.; Chiasson, D.P.; Hu, H.; Shull, P.B. Influence of IMU position and orientation placement errors on ground reaction force estimation. J. Biomech. 2019, 97, 109416. [Google Scholar] [CrossRef]
- Qiu, S.; Liu, L.; Zhao, H.; Wang, Z.; Jiang, Y. MEMS Inertial Sensors Based Gait Analysis for Rehabilitation Assessment via Multi-Sensor Fusion. Micromachines 2018, 9, 442. [Google Scholar] [CrossRef]
- Vargas-Valencia, L.S.; Elias, A.; Rocon, E.; Bastos-Filho, T.; Frizera, A. An IMU-to-Body Alignment Method Applied to Human Gait Analysis. Sensors 2016, 16, 2090. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Rouse, E.; Hargrove, L. Corrigendum: Benchmark Datasets for Bilateral Lower-Limb Neuromechanical Signals from Wearable Sensors during Unassisted Locomotion in Able-Bodied Individuals. Front. Robot. AI 2018, 5, 127. [Google Scholar] [CrossRef]
- Camargo, J.; Ramanathan, A.; Flanagan, W.; Young, A. A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions. J. Biomech. 2021, 119, 110320. [Google Scholar] [CrossRef]
- Hamdi, M.M.; Awad, M.I.; Abdelhameed, M.M.; Tolbah, F.A. Lower limb motion tracking using IMU sensor network. In Proceedings of the 2014 Cairo International Biomedical Engineering Conference (CIBEC), Giza, Egypt, 11–13 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 28–33. [Google Scholar]
- Ahmed, H.; Tahir, M. Improving the Accuracy of Human Body Orientation Estimation With Wearable IMU Sensors. IEEE Trans. Instrum. Meas. 2017, 66, 535–542. [Google Scholar] [CrossRef]
- Faber, H.; van Soest, A.J.; Kistemaker, D.A. Inverse dynamics of mechanical multibody systems: An improved algorithm that ensures consistency between kinematics and external forces. PLoS ONE 2018, 13, e0204575. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Choi, S.; Lee, Y.S.; Kim, J. A Novel Simplified System to Estimate Lower-Limb Joint Moments during Sit-to-Stand. Sensors 2021, 21, 521. [Google Scholar] [CrossRef] [PubMed]
- Fukutoku, K.; Nozaki, T.; Murakami, T. Measurement of Joint Moments using Wearable Sensors. IEEJ J. Ind. Appl. 2020, 9, 125–131. [Google Scholar] [CrossRef]
- Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG Orientation Using a Gradient Descent Algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–7. [Google Scholar]
- Yun, X.; Bachmann, E.R. Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking. IEEE Trans. Robot. 2006, 22, 1216–1227. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, H.; Qiu, S.; Gao, Q. Stance-Phase Detection for ZUPT-Aided Foot-Mounted Pedestrian Navigation System. IEEE/ASME Trans. Mechatron. 2015, 20, 3170–3181. [Google Scholar] [CrossRef]
- Nazarahari, M.; Rouhani, H. 40 years of sensor fusion for orientation tracking via magnetic and inertial measurement units: Methods, lessons learned, and future challenges. Inf. Fusion 2021, 68, 67–84. [Google Scholar] [CrossRef]
- He, Y.; Pi, D. In Anomaly Detection Algorithm for Helicopter Rotor Based on STFT and SVDD. In Proceedings of the International Conference on Communication, Computing & Security, Kauai, HI, USA, 15–18 February 2016; pp. 383–393. [Google Scholar]
- Lin, J.; Keogh, E.; Lonardi, S.; Chiu, B. A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, San Diego, CA, USA, 13 June 2003; pp. 2–11. [Google Scholar]
- Huynh, T.; Schiele, B. Analyzing features for activity recognition. In Proceedings of the 2005 Joint Conference on Smart Objects and Ambient Intelligence: Innovative Context-Aware Services: Usages and Technologies, Grenoble, France, 12–14 October 2005; pp. 159–163. [Google Scholar]
- Bulling, A.; Blanke, U.; Schiele, B. A Tutorial on Human Activity Recognition Using Body-Worn Inertial Sensors. ACM Comput. Surv. 2013, 46, 1–33. [Google Scholar] [CrossRef]
- Bachlin, M.; Plotnik, M.; Roggen, D.; Maidan, I.; Hausdorff, J.M.; Giladi, N.; Troster, G. Wearable Assistant for Parkinson’s Disease Patients with the Freezing of Gait Symptom. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 436–446. [Google Scholar] [CrossRef]
- İkizoğlu, S.; Heydarov, S. Accuracy comparison of dimensionality reduction techniques to determine significant features from IMU sensor-based data to diagnose vestibular system disorders. Biomed. Signal Process. Control. 2020, 61, 101963. [Google Scholar] [CrossRef]
- Hsu, Y.L.; Yang, S.C.; Chang, H.C.; Lai, H.C. Human Daily and Sport Activity Recognition Using a Wearable Inertial Sensor Network. IEEE Access 2018, 6, 31715–31728. [Google Scholar] [CrossRef]
- Hassan, M.M.; Uddin, M.Z.; Mohamed, A.; Almogren, A. A robust human activity recognition system using smartphone sensors and deep learning. Future Gener. Comput. Syst. 2018, 81, 307–313. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Nguyen, L.T.; Yu, B.; Mengshoel, O.J.; Zhu, J.; Wu, P.; Zhang, J. Convolutional Neural Networks for human activity recognition using mobile sensors. In Proceedings of the 6th International Conference on Mobile Computing, Applications and Services, Austin, TX, USA, 6–7 November 2014; pp. 197–205. [Google Scholar]
- Chen, Y.; Xue, Y. A Deep Learning Approach to Human Activity Recognition Based on Single Accelerometer. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, China, 9–12 October 2015; pp. 1488–1492. [Google Scholar]
- Jiang, X.; Napier, C.; Hannigan, B.; Eng, J.J.; Menon, C. Estimating Vertical Ground Reaction Force during Walking Using a Single Inertial Sensor. Sensors 2020, 20, 4345. [Google Scholar] [CrossRef]
- Soviany, S.; Săndulescu, V.; Puşcoci, S. In The hierarchical classification model using Support Vector Machine with multiple kernels in human behavioral pattern recognition. In Proceedings of the 2017 E-Health and Bioengineering Conference (EHB), Sinaia, Romania, 22–24 June 2017; pp. 683–686. [Google Scholar]
- Zhang, C.; Yang, Z.; He, X.; Deng, L. Multimodal Intelligence: Representation Learning, Information Fusion, and Applications. IEEE J. Sel. Top. Signal Process. 2020, 14, 478–493. [Google Scholar] [CrossRef]
- Schlachetzki, J.; Barth, J.; Marxreiter, F.; Gossler, J.; Kohl, Z.; Reinfelder, S.; Gaßner, H.; Aminian, K.; Eskofier, B.; Winkler, J.; et al. Wearable sensors objectively measure gait parameters in Parkinson’s disease. PLoS ONE 2017, 12, e0183989. [Google Scholar] [CrossRef]
- Amin, J.; Ruthiraphong, P. In Cloud-based Gait Analysis Using a Single IMU for Parkinson Disease. In Proceedings of the 2021 18th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Mai, Thailand, 19–22 May 2021; pp. 1129–1132. [Google Scholar]
- Wang, L.; Sun, Y.; Li, Q.; Liu, T.; Yi, J. Two Shank-Mounted IMUs-Based Gait Analysis and Classification for Neurological Disease Patients. IEEE Robot. Autom. Lett. 2020, 5, 1970–1976. [Google Scholar] [CrossRef]
- Alcaraz, J.C.; Moghaddamnia, S.; Penner, M.; Peissig, J. Monitoring the Rehabilitation Progress Using a DCNN and Kinematic Data for Digital Healthcare. In Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–21 January 2021; pp. 1333–1337. [Google Scholar]
- Tong, L.; Song, Q.; Ge, Y.; Liu, M. HMM-Based Human Fall Detection and Prediction Method Using Tri-Axial Accelerometer. IEEE Sens. J. 2013, 13, 1849–1856. [Google Scholar] [CrossRef]
- Alesin, A.; Osanlou, A.; Maw, S.W. In A low budget multifunctional wearable device for motion and falls detection. In Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow, Russia; St. Petersburg, Russia, 29 January–1 February 2018; pp. 1850–1855. [Google Scholar]
- Davarzani, S.; Helzer, D.; Rivera, J.; Saucier, D.; Jo, E.; Burch, R.; Chander, H.; Strawderman, L.; Ball, J.; Smith, B.; et al. Validity and Reliability of StriveTM Sense3 for Muscle Activity Monitoring During the Squat Exercise. Int. J. Kinesiol. Sport. Sci. 2020, 8, 1–18. [Google Scholar] [CrossRef]
- Windt, J.; MacDonald, K.; Taylor, D.; Zumbo, B.D.; Sporer, B.C.; Martin, D.T. “To Tech or Not to Tech?” A Critical Decision-Making Framework for Implementing Technology in Sport. J. Athl. Train. 2020, 55, 902–910. [Google Scholar] [CrossRef]
- Wittmann, F.; Lambercy, O.; Gonzenbach, R.R.; Raai, M.A.V.; Höver, R.; Held, J.; Starkey, M.L.; Curt, A.; Luft, A.; Gassert, R. Assessment-driven arm therapy at home using an IMU-based virtual reality system. In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August 2015; pp. 707–712. [Google Scholar]
- Lin, J.F.; Kulic, D. Human pose recovery using wireless inertial measurement units. Physiol. Meas. 2012, 33, 2099–2115. [Google Scholar] [CrossRef] [PubMed]
- Alemayoh, T.T.; Lee, J.H.; Okamoto, S. LocoESIS: Deep-Learning-Based Leg-Joint Angle Estimation from a Single Pelvis Inertial Sensor. In Proceedings of the 2022 9th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), Seoul, Republic of Korea, 21–24 August 2022; pp. 1–7. [Google Scholar]
- Sung, J.; Han, S.; Park, H.; Cho, H.-M.; Hwang, S.; Park, J.W.; Youn, I. Prediction of Lower Extremity Multi-Joint Angles during Overground Walking by Using a Single IMU with a Low Frequency Based on an LSTM Recurrent Neural Network. Sensors 2022, 22, 53. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, D.; Metheny, J. Overuse injuries in youth sports: Biomechanical considerations. Med. Sci. Sport. Exerc. 2001, 33, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, N.; Giakas, G.; Byrne, J.B.; Pomeroy, V. Frequency domain characteristics of ground reaction forces during walking of young and elderly females. Clin. Biomech. 2002, 17, 615–617. [Google Scholar] [CrossRef]
- Billings, S. Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Logar, G.; Munih, M. Estimation of joint forces and moments for the in-run and take-off in ski jumping based on measurements with wearable inertial sensors. Sensors 2015, 15, 11258–11276. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Inoue, Y.; Shibata, K.; Shiojima, K. Three-dimensional lower limb kinematic and kinetic analysis based on a wireless sensor system. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 842–847. [Google Scholar]
- Yang, E.C.-Y.; Mao, M.-H. 3D analysis system for estimating intersegmental forces and moments exerted on human lower limbs during walking motion. Measurement 2015, 73, 171–179. [Google Scholar] [CrossRef]
- Kutzner, I.; Heinlein, B.; Graichen, F.; Bender, A.; Rohlmann, A.; Halder, A.; Beier, A.; Bergmann, G. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J. Biomech. 2010, 43, 2164–2173. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, J.; Zhang, S.; Yang, C. Lower Limb Exoskeleton Gait Planning Based on Crutch and Human-Machine Foot Combined Center of Pressure. Sensors 2020, 20, 7216. [Google Scholar] [CrossRef] [PubMed]
- Saccares, L.; Brygo, A.; Sarakoglou, I.; Tsagarakis, N.G. A novel human effort estimation method for knee assistive exoskeletons. IEEE Int. Conf. Rehabil. Robot. 2017, 2017, 1266–1272. [Google Scholar] [PubMed]
- Chen, H.P.; Chen, H.C.; Liu, K.C.; Chan, C.T. Online segmentation with multi-layer SVM for knee osteoarthritis rehabilitation monitoring. In Proceedings of the 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, USA, 14–17 June 2016; pp. 55–60. [Google Scholar]
- Kobsar, D.; Osis, S.T.; Boyd, J.E.; Hettinga, B.A.; Ferber, R. Wearable sensors to predict improvement following an exercise intervention in patients with knee osteoarthritis. J. Neuroeng. Rehabil. 2017, 14, 94. [Google Scholar] [CrossRef]
- Kwapisz, J.R.; Weiss, G.M.; Moore, S.A. Activity recognition using cell phone accelerometers. ACM SIGKDD Explor. Newsl. 2011, 12, 74–82. [Google Scholar] [CrossRef]
- Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. A public domain dataset for human activity recognition using smartphones. Esann 2013, 2013, 3. [Google Scholar]
- Shoaib, M.; Bosch, S.; Incel, O.D.; Scholten, H.; Havinga, P.J.M. A Survey of Online Activity Recognition Using Mobile Phones. Sensors 2015, 15, 2059–2085. [Google Scholar] [CrossRef]
- Díez, L.E.; Bahillo, A.; Masegosa, A.D.; Perallos, A.; Azpilicueta, L.; Falcone, F.; Astrain, J.J.; Villadangos, J. Signal processing requirements for step detection using wrist-worn IMU. In Proceedings of the 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), Cartagena des Indias, Colombia, 7–11 September 2015; pp. 1032–1035. [Google Scholar]
- Yuan, L.; Yu, S.; Yang, Z.; Duan, M.; Li, K. A data balancing approach based on generative adversarial network. Future Gener. Comput. Syst. 2023, 141, 768–776. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Liu, J.; Yuan, J. Data augmentation for improving heating load prediction of heating substation based on TimeGAN. Energy 2022, 260, 124919. [Google Scholar] [CrossRef]
- Yao, H.; Zhao, S.; Gao, Z.; Xue, Z.; Song, B.; Li, F.; Li, J.; Liu, Y.; Hou, Y.; Wang, L. Data-driven analysis on the subbase strain prediction: A deep data augmentation-based study. Transp. Geotech. 2023, 40, 100957. [Google Scholar] [CrossRef]
Location | References |
---|---|
Thigh | (Barshan and Yüksek, 2014; Liu, S. et al., 2020; Martinez-Hernandez and Dehghani-Sanij, 2018; Rezaie and Ghassemian, 2017; Safi, Attal, Mohammed, Khalil, and Amirat, 2015) [33,34,35,36,37] |
Shank | (Liu, S. et al., 2020; Martinez-Hernandez and Dehghani-Sanij, 2018) [35,37] |
Phone | (Abdel-Basset et al., 2021; Alemayoh et al., 2021; Yuwen Chen, Zhong, Zhang, Sun, and Zhao, 2016; Haresamudram et al., 2020; Ignatov, 2018; Liu, Y., Zhao, Shao, and Luo, 2016; Ma, Li, Zhang, Gao, and Lu, 2019; Mekruksavanich and Jitpattanakul, 2021; Pei et al., 2013; Reyes-Ortiz, Oneto, Samà, Parra, and Anguita, 2016; Yao, S., Hu, Zhao, Zhang, and Abdelzaher, 2017; Zhao, Yang, Chevalier, Xu, and Zhang, 2018) [21,25,26,38,39,40,41,42,43,44,45,46] |
Waist | (Haresamudram et al., 2020; Liu, S. et al., 2020; Mahmud et al., 2020) [24,26,37] |
Foot | (Abedin, Ehsanpour, Shi, Rezatofighi, and Ranasinghe, 2021; Mahmud et al., 2020; Martinez-Hernandez and Dehghani-Sanij, 2018; Ordóñez and Roggen, 2016; Zhao et al., 2018) [24,35,43,47,48] |
Arm | (Abedin et al., 2021; Fullerton, Heller, and Munoz-Organero, 2017; Guan and Ploetz, 2017; Liu, S. et al., 2020; Ma et al., 2019; Mahmud et al., 2020; Ordóñez and Roggen, 2016; Ming Zeng et al., 2018; Zhao et al., 2018) [24,37,43,46,47,48,49,50,51] |
Chest | (Abedin et al., 2021; Barshan and Yüksek, 2014; Guan and Ploetz, 2017; S. Liu et al., 2020; Ma et al., 2019; Mahmud et al., 2020; Rezaie and Ghassemian, 2017; Safi et al., 2015; Ming Zeng et al., 2018) [24,33,34,36,37,46,48,50,51] |
Wrist | (Abedin et al., 2021; Barshan and Yüksek, 2014; Fullerton et al., 2017; Guan and Ploetz, 2017; Hassemer et al., 2023; Liu, S. et al., 2020; Ma et al., 2019; Mahmud et al., 2020; Mekruksavanich and Jitpattanakul, 2021; Rezaie and Ghassemian, 2017; Sergio Staab, Bröning, Luderschmidt, and Martin, 2022; S. Staab, Krissel, Luderschmidt, and Martin, 2022; Staab, S., Luderschmidt, and Martin, 2021; Ming Zeng et al., 2018) [24,33,36,37,45,46,48,49,50,51,52,53,54,55] |
Ankle | (Abedin et al., 2021; Fullerton et al., 2017; Guan and Ploetz, 2017; Liu, S. et al., 2020; Ma et al., 2019; Mahmud et al., 2020; Safi et al., 2015; Ming Zeng et al., 2018) [24,34,37,46,48,49,50,51] |
Hip | (Fullerton et al., 2017) [49] |
Spine | (Fullerton et al., 2017) [49] |
Head | (Liu, S. et al., 2020) [37] |
Trunk | (Liu, S. et al., 2020; Ming Zeng et al., 2018) [37,51] |
Location | References |
---|---|
CoM | (Hyerim Lim et al., 2020) [16] |
Sacrum | (Alcantara et al., 2022; M. Lee and Park, 2020) [9,14] |
Pelvis | (Johnson et al., 2021; Mundt et al., 2021; Mundt et al., 2020; Wouda et al., 2018; Zhu, Xia, and Zhang, 2023) [8,11,13,56,57] |
L5 | (Guo et al., 2017; Shahabpoor et al., 2018) [58,59] |
C7 | (Shahabpoor et al., 2018) [59] |
Lower back | (Dorschky et al., 2020) [10] |
Thigh | (Chaaban et al., 2021; Dorschky et al., 2020; Hossain, Guo, and Choi, 2023; Johnson et al., 2021; Molinaro, Kang, Camargo, Gombolay, and Young, 2022; Mundt et al., 2021; Mundt et al., 2020; Shahabpoor et al., 2018; Stetter et al., 2020; Stetter, Ringhof, Krafft, Sell, and Stein, 2019; Zhu et al., 2023) [4,8,10,11,13,57,59,60,61,62,63] |
Shank | (Barua et al., 2021; Chaaban et al., 2021; Derie et al., 2020; Dorschky et al., 2020; Hossain et al., 2023; Jiang, Gholami, Khoshnam, Eng, and Menon, 2019; Johnson et al., 2021; Mundt et al., 2021; Mundt et al., 2020; Stetter et al., 2020; Stetter et al., 2019; Tedesco et al., 2021) [4,8,10,11,12,13,60,62,63,64,65,66] |
Phone | (De Brabandere et al., 2020) [5] |
Foot | (Alcantara et al., 2022; Barua et al., 2021; Dorschky et al., 2020; Hossain et al., 2023; Jiang et al., 2019; Zhu et al., 2023) [10,12,14,57,63,65] |
Hip | (De Brabandere et al., 2020; Molinaro et al., 2022) [5,61] |
Reference | Number of Sensors | Position | Frequency | Activation | Tasks | Optimal Model | Accuracy |
---|---|---|---|---|---|---|---|
(Guo et al., 2017) [58] | 1 | L5 | 128 Hz | Walking | vGRF | OFR | Average prediction percentage error < 5% |
(Wouda et al., 2018) [56] | 3 | Pelvis, lower legs | 240 Hz | Running | vGRF | ANN | Single subject training: ρ > 0.99, Multiple subject training: ρ > 0.9 |
(Shahabpoor et al., 2018) [59] | 3 | C7, L5, thigh | 128 Hz | Walking | Tri-Axial GRF | Linear regression | NRMSE: vGRF: 7%, A-P GRF: 16%, M-L GRF: 18% |
(Lim et al., 2019) [16] | 1 | CoM | 100 Hz | Walking | A-P GRF, vGRF | ANN | The approximate errors: vGRF: 58 N, A-P GRF: 23 N |
(Johnson et al., 2021) [8] | 5 | Pelvis, thigh, shank | Virtual IMU data | Sidestepping, running | Tri-Axial GRF | CaffeNet | Pearson correlation coefficient: 0.89 |
ResNet-50 | Pearson correlation coefficient: 0.87 | ||||||
(Jiang et al., 2020) [98] | 1 | Shank | 100 Hz | Walking | vGRF | Random forest regressor | Intra-subject test: RMSE = 0.02 BW Inter-subject test: RMSE = 0.10 BW |
(Lee and Park, 2020) [9] | 1 | Sacrum | 148 Hz | Walking | Tri-Axial GRF | ANN | NRMSE: Tri-Axial GRF: 6.7–15.6%, |
(Dorschky et al., 2020) [10] | 4 | Lower back, the right thigh, shank and foot | 1000 Hz | Walking, Running | A-P GRF, vGRF | CNN | Pearson correlation coefficients: A-P GRF: 0.970 vGRF: 0.980 |
(Chaaban et al., 2021) [60] | 4 acc, 4 gre | Thigh, shank | 1125 Hz | Jumping | vGRF | Linear regression | RMSE: 0.22 ± 0.002 BW |
4 acc | RMSE: 0.25 ± 0.003 BW | ||||||
(Tedesco et al., 2021) [64] | 2 | Left and right shanks | 238 Hz | Running | vGRF | ANN | RMSE: 0.148 BW |
(Alcantara et al., 2022) [14] | 3 | Two on the right shoe and one on the sacrum | 2000 Hz | Uphill and downhill running | Perpendicular to running surface GRF | RNN | RMSE: 0.16 ± 0.04 BW |
(Zhu et al., 2023) [57] | 5 | Pelvis, left thigh, left ankle, right thigh, and right ankle | 100 Hz | Fast running, jogging, slow walking, brisk walking, and walking up and down stairs | vGRF | Transformer | MSE: 0.0205 |
Reference | Number of Sensors | Position | Frequency | Activation | Tasks | Optimal Model | Accuracy |
---|---|---|---|---|---|---|---|
(Stetter et al., 2019) [62] | 2 | Right thigh and shank | 1500 Hz | Walking, jumping | KJF | ANN | Pearson correlation coefficients: vertical KJF: 0.60–0.94, P KJF: 0.64–0.90, M-L KJF: 0.25–0.60. |
(Lim et al., 2020) [16] | 1 | CoM | 100 Hz | Walking | Joint torques | ANN | The approximate errors: hip joint torques: 16.7 Nm, knee joint torques: 11.4 Nm, ankle joint torques: 15.3 Nm. |
(Jiang et al., 2019) [65] | 2 | Shank, foot | 100 Hz | Walking | Ankle joint power | RF | Intra-subject test: R = 0.98, Inter-subject test: R = 0.92. |
(Derie et al., 2020) [66] | 2 | Antero-medial side of both tibias | 1000 Hz | Running | Maximal vertical loading rate | XGB | Subject-dependent: mean absolute percentage error: 6.08%, Subject-independent: mean absolute percentage error: 11.09%. |
(Lee and Park, 2020) [9] | 1 | Sacrum | 148 Hz | Walking | Joint torques | ANN | NRMSE: joint torques: 11.4–24.1% |
(Stetter et al., 2020) [4] | 2 | Right thigh and shank | 1500 Hz | Walking, running, 45° cutting maneuver | KFM, KAM | ANN | KFM: R = 0.74 ± 0.36, KAM: R = 0.39 ± 0.32. |
(De Brabandere et al., 2020) [5] | 1 | Left hip | 50 Hz | Walking, walking upstairs/downstairs, sitting down and standing up, forward lunge and side lunging, standing on one leg, squatting on one leg | Hip moment | Regularized linear regression | Mean absolute error: left hip: 29%, right hip: 36%. |
(Dorschky et al., 2020) [10] | 4 | Lower back, the right thigh, shank and foot | 1000 Hz | Walking, running | Joint moments | CNN | Pearson correlation coefficients: hip moment: 0.94, knee moment:0.975, ankle moment: 0.981. |
(Mundt et al., 2020) [11] | 5 | Pelvis, thigh, shank | Virtual IMU data | Walking | Joint moments | MLP | The mean correlation of the models: r-kinetic-measured: 0.95, r-kinetic-combined: 0.95. |
(Barua et al., 2021) [12] | 2 | Foot, shank | 100 Hz | Walking | Ankle joint power | LSTM | R > 81.25% |
CNN | R > 83.09% | ||||||
CNN-LSTM | R > 83.19% | ||||||
(Chaaban et al., 2021) [60] | 4 acc, 4 gre | Thigh, shank | 1125 Hz | Jumping | Knee extension moment, sagittal plane knee power absorption | Linear regression | RMSE: knee extension moment: 0.028 ± 0.0002 BW·HT, sagittal plane knee power: 0.27 ± 0.003 BW·HT. |
4 acc | RMSE: knee extension moment: 0.031 ± 0.0002 BW·HT sagittal plane knee power: 0.32 ± 0.003 BW·HT | ||||||
(Mundt et al., 2021) [13] | 5 | Pelvis, thigh, shank | 100 Hz | Walking | Joint moments | MLP, LSTM, CNN | Mean model correlation coefficients: joint moment > 0.939. |
(Molinaro et al., 2022) [61] | 3 | Trunk, thigh, and hip | Virtual IMU data | Walking | Hip moment | TCN | Average RMSE: steady-state ambulation: 0.131 ± 0.018 Nm/kg, mode transitions: 0.152 ± 0.027 Nm/kg. |
(Hossain et al., 2023) [63] | 3 | Thigh, shank, and foot | 100 Hz | Tread-mill walking, level-ground walking, ramp ascent/descent, and stair ascent/descent | Hip, knee, and ankle joint moment, 3D GRFs | Hybrid model based on 1D, 2D convolutional, GRU, and dense layers with the application of bagging techniques | PCC: 0.923 ± 0.030 |
8 | Trunk, pelvis, and both thighs, shanks | 100 Hz | Walking | KFM, KAM, and 3D GRFs | PCC: 0.884 ± 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; Wang, F.; Fan, A.; Zhao, W.; Yao, W.; Yang, P. Extended Application of Inertial Measurement Units in Biomechanics: From Activity Recognition to Force Estimation. Sensors 2023, 23, 4229. https://doi.org/10.3390/s23094229
Liang W, Wang F, Fan A, Zhao W, Yao W, Yang P. Extended Application of Inertial Measurement Units in Biomechanics: From Activity Recognition to Force Estimation. Sensors. 2023; 23(9):4229. https://doi.org/10.3390/s23094229
Chicago/Turabian StyleLiang, Wenqi, Fanjie Wang, Ao Fan, Wenrui Zhao, Wei Yao, and Pengfei Yang. 2023. "Extended Application of Inertial Measurement Units in Biomechanics: From Activity Recognition to Force Estimation" Sensors 23, no. 9: 4229. https://doi.org/10.3390/s23094229
APA StyleLiang, W., Wang, F., Fan, A., Zhao, W., Yao, W., & Yang, P. (2023). Extended Application of Inertial Measurement Units in Biomechanics: From Activity Recognition to Force Estimation. Sensors, 23(9), 4229. https://doi.org/10.3390/s23094229