A Tailor-Made, Mirror-Based Infrared Scanner for the Reflectography of Paintings: Development, Features, and Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optical and Mechanical Components
2.2. Electronic and Software Components
2.3. Optical Scheme
2.4. Post-Processing and Merging
2.5. Case Study
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Asperen de Boer, J.R.J. Infrared Reflectography: A Method for the Examination of Paintings. Appl. Opt. 1968, 7, 1711. [Google Scholar] [CrossRef] [PubMed]
- van Asperen de Boer, J.R.J. Reflectography of Paintings Using an Infrared Vidicon television System. Stud. Conserv. 1969, 14, 96–118. [Google Scholar] [CrossRef]
- Gargano, M.; Ludwig, N.; Poldi, G. A New Methodology for Comparing IR Reflectographic Systems. Infrared Phys. Technol. 2007, 49, 249–253. [Google Scholar] [CrossRef]
- Delaney, J.K.; Trumpy, G.; Didier, M.; Ricciardi, P.; Dooley, K.A. A High Sensitivity, Low Noise and High Spatial Resolution Multi-Band Infrared Reflectography Camera for the Study of Paintings and Works on Paper. Herit. Sci. 2017, 5, 32. [Google Scholar] [CrossRef]
- Cavaleri, T.; Buscaglia, P.; Migliorini, S.; Nervo, M.; Piccablotto, G.; Piccirillo, A.; Pisani, M.; Puglisi, D.; Vaudan, D.; Zucco, M. Pictorial Materials Database: 1200 Combinations of Pigments, Dyes, Binders and Varnishes Designed as a Tool for Heritage Science and Conservation. Appl. Phys. A 2017, 123, 419. [Google Scholar] [CrossRef]
- Aldrovandi, A.; Casini, A.; Altamura, M.L.; Cianfanelli, M.T.; Riitano, P.; Cagnini, A.; Galeotti, M.; Picollo, M.; Radicati, B.; Agostini, A.; et al. (Eds.) Fiber Optics Reflectance Spectra (FORS) of Pictorial Materials in the 270–1700 nm Range, 2020th ed.; SABeC IFAC-CNR Spectral Database: Sesto Fiorentino, Italy; Available online: https://spectradb.ifac.cnr.it/fors (accessed on 10 November 2020).
- Gabrieli, F.; Delaney, J.K.; Erdmann, R.G.; Gonzalez, V.; van Loon, A.; Smulders, P.; Berkeveld, R.; van Langh, R.; Keune, K. Reflectance Imaging Spectroscopy (RIS) for Operation Night Watch: Challenges and Achievements of Imaging Rembrandt’s Masterpiece in the Glass Chamber at the Rijksmuseum. Sensors 2021, 21, 6855. [Google Scholar] [CrossRef]
- Cavaleri, T.; Pelosi, C.; Giustetto, R.; Andreotti, A.; Bonaduce, I.; Calabrò, G.; Caliri, C.; Colantonio, C.; Manchinu, P.; Legnaioli, S.; et al. The Northern-Italy Renaissance in a Panel by Defendente Ferrari: A Complete Study with a Multi-Analytical Investigation. J. Archaeol. Sci. Rep. 2022, 46, 103669. [Google Scholar] [CrossRef]
- Gargano, M.; Galli, A.; Bonizzoni, L.; Alberti, R.; Aresi, N.; Caccia, M.; Castiglioni, I.; Interlenghi, M.; Salvatore, C.; Ludwig, N.; et al. The Giotto’s Workshop in the XXI Century: Looking inside the “God the Father with Angels” Gable. J. Cult. Herit. 2019, 36, 255–263. [Google Scholar] [CrossRef]
- Gargano, M.; Bonizzoni, L.; Grifoni, E.; Melada, J.; Guglielmi, V.; Bruni, S.; Ludwig, N. Multi-Analytical Investigation of Panel, Pigments and Varnish of The Martyirdom of St. Catherine by Gaudenzio Ferrari (16th Century). J. Cult. Herit. 2020, 46, 289–297. [Google Scholar] [CrossRef]
- Daffara, C.; Ambrosini, D.; Pezzati, L.; Marchioro, G. Thermal Quasi-Reflectography (TQR): Current Research and Potential Applications. In Proceedings of the Optics for Arts, Architecture, and Archaeology IV, Munich, Germany, 15–16 May 2013; Pezzati, L., Targowski, P., Eds.; p. 87900S. [Google Scholar]
- Daffara, C.; Parisotto, S.; Mariotti, P.I.; Ambrosini, D. Dual Mode Imaging in Mid Infrared with Thermal Signal Reconstruction for Innovative Diagnostics of the “Monocromo” by Leonardo Da Vinci. Sci. Rep. 2021, 11, 22482. [Google Scholar] [CrossRef]
- Orazi, N. Mid-Wave Infrared Reflectography and Thermography for the Study of Ancient Books: A Review. Stud. Conserv. 2020, 65, 437–449. [Google Scholar] [CrossRef]
- Cavaleri, T.; Pelosi, C.; Ricci, M.; Laureti, S.; Romano, F.P.; Caliri, C.; Ventura, B.; De Blasi, S.; Gargano, M. IR Reflectography, Pulse-Compression Thermography, MA-XRF, and Radiography: A Full-Thickness Study of a 16th-Century Panel Painting Copy of Raphael. J. Imaging 2022, 8, 150. [Google Scholar] [CrossRef]
- Melada, J.; Gargano, M.; Ludwig, N. Pulsed Thermography and Infrared Reflectography: Comparative Results for Underdrawing Visualization in Paintings. Appl. Opt. 2022, 61, E33–E38. [Google Scholar] [CrossRef]
- Rosi, F.; Miliani, C.; Braun, R.; Harig, R.; Sali, D.; Brunetti, B.G.; Sgamellotti, A. Noninvasive Analysis of Paintings by Mid-infrared Hyperspectral Imaging. Angew. Chem. Int. Ed. 2013, 52, 5258–5261. [Google Scholar] [CrossRef]
- Bertani, D.; Cetica, M.; Poggi, P.; Puccioni, G.; Buzzegoli, E.; Kunzelman, D.; Cecchi, S. A Scanning Device for Infrared Reflectography. Stud. Conserv. 1990, 35, 113–116. [Google Scholar] [CrossRef]
- Peccenini, E.; Albertin, F.; Bettuzzi, M.; Brancaccio, R.; Casali, F.; Morigi, M.P.; Petrucci, F. Advanced Imaging Systems for Diagnostic Investigations Applied to Cultural Heritage. J. Phys. Conf. Ser. 2014, 566, 012022. [Google Scholar] [CrossRef]
- Consolandi, L.; Bertani, D. A Prototype for High Resolution Infrared Reflectography of Paintings. Infrared Phys. Technol. 2007, 49, 239–242. [Google Scholar] [CrossRef]
- Saunders, D.; Billinge, R.; Cupitt, J.; Atkinson, N.; Liang, H. A New Camera for High-Resolution Infrared Imaging of Works of Art. Stud. Conserv. 2006, 51, 277–290. [Google Scholar] [CrossRef]
- Cucci, C.; Delaney, J.K.; Picollo, M. Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts. Acc. Chem. Res. 2016, 49, 2070–2079. [Google Scholar] [CrossRef]
- Apollo: World’s Leading Infrared Camera. Available online: https://www.opusinstruments.com/cameras/apollo-camera/ (accessed on 20 February 2023).
- Daffara, C.; Pampaloni, E.; Pezzati, L.; Barucci, M.; Fontana, R. Scanning Multispectral IR Reflectography SMIRR: An Advanced Tool for Art Diagnostics. Acc. Chem. Res. 2010, 43, 847–856. [Google Scholar] [CrossRef]
- Daffara, C.; Fontana, R. Multispectral Infrared Reflectography to Differentiate Features in Paintings. Microsc. Microanal. 2011, 17, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Striova, J.; Dal Fovo, A.; Fontana, R. Reflectance Imaging Spectroscopy in Heritagescience. Riv. Nuovo Cim. 2020, 43, 515–566. [Google Scholar] [CrossRef]
- Camille, S.C.; Alamin, M.; Marzani, S.F.; Boochs, F. Integration of 3D and multispectral data for cultural heritage applications: Survey and perspectives. Image Vis. Comput. 2013, 31, 91–102. [Google Scholar]
- Gargano, M.; Cavaliere, F.; Viganò, D.; Galli, A.; Ludwig, N. A New Spherical Scanning System for Infrared Reflectography of Paintings. Infrared Phys. Technol. 2017, 81, 128–136. [Google Scholar] [CrossRef]
- Gao, S.; Yang, K.; Shi, H.; Wang, K.; Bai, J. Review on Panoramic Imaging and Its Applications in Scene Understanding. IEEE Trans. Instrum. Meas. 2022, 71, 1–34. [Google Scholar] [CrossRef]
- Littlefield, R. Theory of the “No-Parallax” Point in Panorama Photography. 2006. Available online: https://www.janrik.net/PanoPostings/NoParallaxPoint/TheoryOfTheNoParallaxPoint.pdf (accessed on 23 February 2023).
- Stoica, A. Image Transformation Matrix. Available online: https://www.mathworks.com/matlabcentral/fileexchange/46053-image-transformation-matrix (accessed on 24 February 2023).
- Photo Stitching Software 360 Degree Panorama Image Software—PTGui Stitching Software. Available online: https://ptgui.com/ (accessed on 23 February 2023).
- Hugin—Panorama Photo Stitcher. Available online: https://hugin.sourceforge.io/ (accessed on 23 February 2023).
- GigaPan|High-Resolution Images|Panoramic Photography|GigaPixel Images. Available online: http://gigapan.com/ (accessed on 23 February 2023).
- Image Composite Editor. Microsoft Research. Available online: https://www.microsoft.com/en-us/research/project/image-composite-editor/ (accessed on 23 February 2023).
- Official Adobe Photoshop–Photo & Design Software. Available online: https://www.adobe.com/products/photoshop.html (accessed on 23 February 2023).
- Lyu, W.; Zhou, Z.; Chen, L.; Zhou, Y. A Survey on Image and Video Stitching. Virtual Real. Intell. Hardw. 2019, 1, 55–83. [Google Scholar] [CrossRef]
Component | Manufacturer | Model | Tech Specifics |
---|---|---|---|
Camera | Xenics™, Leuven, Belgium | Xeva-1.7-320 InGaAs camera | Sensitivity between 0.9 and 1.7 µm, 320 × 256-element array with a pixel pitch of 20 µm, and cooling system, yielding 14-bit grayscale images. |
Lens | Tamron™, Saitama, Japan | 500 mm f/8 SP macro-tele lens | Compact design considering its focal length; it has few glass elements and a minimum focal distance of approximately 1.7 m. At this distance, the optical magnification is about 3:1, which means that at a 1.7 m distance a given painting would be sampled at 560 pixels per inch at the center of the scanned area. |
Mirror | GSO™, Guan Sheng Optical, Taiwan | Elliptical mirror | The mirror surface has aluminate layer providing 94% reflectivity, mirror size 104 × 150 mm, precision 1/12 RMS, thickness 18.7 mm. |
Distance meter | Chengdu JRT Meter Technology Co., Ltd, Chengdu, China | Time-of-flight laser distance meter | Wavelength 635 nm, range 0.02–50 m, accuracy ±2 mm, power < 1 mW (class II laser). Distance is measured by measuring the time taken by the laser beam to travel a distance. Module is controlled by using a TTL/serial communication protocol. |
Motors | OSM Technology Co., Ltd., Nanjing, China | Stepper motors | Current 2A, torque 59 Ncm, each motor has different gear ratio depending on the weight to be moved. Angular resolution of all movements is 0.02°. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gargano, M.; Viganò, D.; Cavaleri, T.; Cavaliere, F.; Ludwig, N.; Pozzi, F. A Tailor-Made, Mirror-Based Infrared Scanner for the Reflectography of Paintings: Development, Features, and Applications. Sensors 2023, 23, 4322. https://doi.org/10.3390/s23094322
Gargano M, Viganò D, Cavaleri T, Cavaliere F, Ludwig N, Pozzi F. A Tailor-Made, Mirror-Based Infrared Scanner for the Reflectography of Paintings: Development, Features, and Applications. Sensors. 2023; 23(9):4322. https://doi.org/10.3390/s23094322
Chicago/Turabian StyleGargano, Marco, Daniele Viganò, Tiziana Cavaleri, Francesco Cavaliere, Nicola Ludwig, and Federica Pozzi. 2023. "A Tailor-Made, Mirror-Based Infrared Scanner for the Reflectography of Paintings: Development, Features, and Applications" Sensors 23, no. 9: 4322. https://doi.org/10.3390/s23094322
APA StyleGargano, M., Viganò, D., Cavaleri, T., Cavaliere, F., Ludwig, N., & Pozzi, F. (2023). A Tailor-Made, Mirror-Based Infrared Scanner for the Reflectography of Paintings: Development, Features, and Applications. Sensors, 23(9), 4322. https://doi.org/10.3390/s23094322