Synchronous Phase-Shifting Interference for High Precision Phase Imaging of Objects Using Common Optics
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Working Flow of Reconstruction Phase Distribution
3.2. Analysis of Resolution
3.3. Static Phase Measurement for Thin Object
3.4. Dynamic Phase Measurement of a Standard Object
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Millet, L.; Mir, M.; Ding, H.; Unarunotai, S.; Rogers, J.; Gillette, M.U.; Popescu, G. Spatial light interference microscopy (SLIM). Opt. Express 2011, 19, 1016–1026. [Google Scholar] [CrossRef] [PubMed]
- Belashov, A.; Zhikhoreva, A.; Belyaeva, T.; Nikolsky, N.; Semenova, I.; Kornilova, E.; Vasyutinskii, O. Quantitative assessment of changes in cellular morphology at photodynamic treatment in vitro by means of digital holographic microscopy. Biomed. Opt. Express 2019, 10, 4975–4986. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, T.; Anand, A.; Andemariam, B.; Javidi, B. Deep learning-based cell identification and disease diagnosis using spatio-temporal cellular dynamics in compact digital holographic microscopy. Biomed. Opt. Express 2020, 11, 4491–4508. [Google Scholar] [CrossRef] [PubMed]
- Pirone, D.; Sirico, D.; Miccio, L.; Bianco, V.; Mugnano, M.; Ferraro, P.; Memmolo, P. Speeding up reconstruction of 3D tomograms in holographic flow cytometry via deep learning. Lab A Chip 2022, 22, 793–804. [Google Scholar] [CrossRef]
- Xia, P.; Ri, S.; Wang, Q.; Tsuda, H. Nanometer-order thermal deformation measurement by a calibrated phase-shifting digital holography system. Opt. Express 2018, 26, 12594–12604. [Google Scholar] [CrossRef]
- Thomas, B.P.; Pillai, S.A.; Narayanamurthy, C. Computed time average digital holographic fringe pattern under random excitation. Appl. Opt. 2021, 60, A188–A194. [Google Scholar] [CrossRef]
- Tahara, T.; Quan, X.; Otani, R.; Takaki, Y.; Matoba, O. Digital holography and its multidimensional imaging applications: A review. Microscopy 2018, 67, 55–67. [Google Scholar] [CrossRef]
- Xia, P.; Wang, Q.; Ri, S.; Tsuda, H. Calibrated phase-shifting digital holography based on space-division multiplexing. Opt. Lasers Eng. 2019, 123, 8–13. [Google Scholar] [CrossRef]
- Wang, H.; Li, K.; Jiang, X.; Wang, J.; Zhang, X.; Liu, X. Zero-order term suppression in off-axis holography based on deep learning method. Opt. Commun. 2023, 537, 129264. [Google Scholar] [CrossRef]
- Lim, J.; Choi, H.; Park, N.-C. Phase-shift digital holography using multilayer ceramic capacitor actuators. Opt. Lasers Eng. 2022, 156, 107080. [Google Scholar] [CrossRef]
- Xia, P.; Ri, S.; Inoue, T.; Awatsuji, Y.; Matoba, O. Dynamic phase measurement of a transparent object by parallel phase-shifting digital holography with dual polarization imaging cameras. Opt. Lasers Eng. 2021, 141, 106583. [Google Scholar] [CrossRef]
- Meng, X.; Cai, L.; Xu, X.; Yang, X.; Shen, X.; Dong, G.; Wang, Y. Two-step phase-shifting interferometry and its application in image encryption. Opt. Lett. 2006, 31, 1414–1416. [Google Scholar] [CrossRef]
- Shaked, N.T.; Newpher, T.M.; Ehlers, M.D.; Wax, A. Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics. Appl. Opt. 2010, 49, 2872–2878. [Google Scholar] [CrossRef]
- Smythe, R.; Moore, R. Instantaneous phase measuring interferometry. Opt. Eng. 1984, 23, 361–364. [Google Scholar] [CrossRef]
- Koliopoulos, C.L. Simultaneous phase-shift interferometer. In Proceedings of the Advanced Optical Manufacturing and Testing II, San Diego, CA, USA, 22–23 July 1991; pp. 119–127. [Google Scholar]
- Sivakumar, N.; Hui, W.; Venkatakrishnan, K.; Ngoi, B. Large surface profile measurement with instantaneous phase-shifting interferometry. Opt. Eng. 2003, 42, 367–372. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, H.; Liu, X.; Liu, J.; Cui, X. Pixel Resolution Imaging in Parallel Phase-Shifting Digital Holography. Appl. Sci. 2022, 12, 5812. [Google Scholar] [CrossRef]
- Lokesh Reddy, B.; Nelleri, A. Single-pixel compressive digital holographic encryption system based on circular harmonic key and parallel phase shifting digital holography. Int. J. Opt. 2022, 2022, 6298010. [Google Scholar] [CrossRef]
- Liu, H.; RV, V.; Ren, H.; Du, X.; Chen, Z.; Pu, J. Single-Shot On-Axis Fizeau Polarization Phase-Shifting Digital Holography for Complex-Valued Dynamic Object Imaging. Photonics 2022, 9, 126. [Google Scholar] [CrossRef]
- Safrani, A.; Abdulhalim, I. Real-time phase shift interference microscopy. Opt. Lett. 2014, 39, 5220–5223. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, Y.; Xie, Y.; Liu, J.; Luo, Y. Synchronous Multi-Channel Phase-Shifting Digital Holographic Technology. Acta Opt. Sin. 2013, 33, 1009002–1009037. [Google Scholar] [CrossRef]
- Muñoz, V.F.; Arellano, N.-I.T.; García, D.S.; García, A.M.; Zurita, G.R.; Lechuga, L.G. Measurement of mean thickness of transparent samples using simultaneous phase shifting interferometry with four interferograms. Appl. Opt. 2016, 55, 4047–4051. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Tian, A.; Liu Sr, B.; Wang Sr, H.; Wang, K.; Wang, S. Common-path and synchronous phase shifting of lateral shearing interferometry based on micro-polarizer array. In Proceedings of the Eighth Symposium on Novel Photoelectronic Detection Technology and Applications, Kunming, China, 7–9 December 2021; pp. 1050–1056. [Google Scholar]
- Majeed, H.; Sridharan, S.; Mir, M.; Ma, L.; Min, E.; Jung, W.; Popescu, G. Quantitative phase imaging for medical diagnosis. J. Biophotonics 2017, 10, 177–205. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaran, D.; Sivakumar, M. Medical image registration: A Matlab based approach. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2017, 2, 29–34. [Google Scholar]
- Abbe, E. Die Lehre von der Bildentstehung im Mikroskop; Vieweg, F., Ed.; University of Michigan Library: Ann Arbor, MI, USA, 1910. [Google Scholar]
- Gissibl, T.; Thiele, S.; Herkommer, A.; Giessen, H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 2016, 10, 554–560. [Google Scholar] [CrossRef]
- Ghiglia, D.C.; Romero, L.A.J.J.A. Minimum Lp-norm two-dimensional phase unwrapping. J. Opt. Soc. Am. A 1996, 13, 1999–2013. [Google Scholar] [CrossRef]
- Muñoz, V.F.; Toto-Arellano, N.; López-Ortiz, B.; García, A.M.; Rodríguez-Zurita, G. Measurement of red blood cell characteristic using parallel phase shifting interferometry. Optik 2015, 126, 5307–5309. [Google Scholar] [CrossRef]
- Pérez, A.M.; Rodríguez-Zurita, G.; Flores-Muñoz, V.; Parra-Escamilla, G.; Serrano-García, D.; Martínez-García, A.; Islas-Islas, J.; Ortega-Mendoza, J.; Lechuga, L.G.; Toto-Arellano, N.-I. Dynamic Mach–Zehnder interferometer based on a Michelson configuration and a cube beam splitter system. Opt. Rev. 2019, 26, 231–240. [Google Scholar] [CrossRef]
Expected Thickness | Actual Manufactured Thickness | The Proposed Method |
---|---|---|
200 nm | 213.8 nm | 216.9 nm |
300 nm | 321.5 nm | 318.9 nm |
350 nm | 385.5 nm | 389.5 nm |
Number | Diameter (µm) | Phase Height (rad) | Thickness (µm) |
---|---|---|---|
1 | 9.85 | 2.36 | 9.98 |
2 | 10.24 | 2.43 | 10.30 |
3 | 9.72 | 2.33 | 9.88 |
4 | 10.40 | 2.41 | 10.22 |
5 | 10.38 | 2.39 | 10.12 |
6 | 10.41 | 2.44 | 10.34 |
Average | 10.17 | 2.39 | 10.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Liu, L.; Wang, T.; Wang, X.; Du, X.; Hao, R.; Liu, J.; Zhang, J. Synchronous Phase-Shifting Interference for High Precision Phase Imaging of Objects Using Common Optics. Sensors 2023, 23, 4339. https://doi.org/10.3390/s23094339
Zhao J, Liu L, Wang T, Wang X, Du X, Hao R, Liu J, Zhang J. Synchronous Phase-Shifting Interference for High Precision Phase Imaging of Objects Using Common Optics. Sensors. 2023; 23(9):4339. https://doi.org/10.3390/s23094339
Chicago/Turabian StyleZhao, Jiaxi, Lin Liu, Tianhe Wang, Xiangzhou Wang, Xiaohui Du, Ruqian Hao, Juanxiu Liu, and Jing Zhang. 2023. "Synchronous Phase-Shifting Interference for High Precision Phase Imaging of Objects Using Common Optics" Sensors 23, no. 9: 4339. https://doi.org/10.3390/s23094339
APA StyleZhao, J., Liu, L., Wang, T., Wang, X., Du, X., Hao, R., Liu, J., & Zhang, J. (2023). Synchronous Phase-Shifting Interference for High Precision Phase Imaging of Objects Using Common Optics. Sensors, 23(9), 4339. https://doi.org/10.3390/s23094339