Propagation Constant Measurement Based on a Single Transmission Line Standard Using a Two-Port VNA
Abstract
:1. Introduction
2. Formulating the Eigenvalue Problem
- All S-parameters must be non-zero within the considered frequency range ().
- The S-parameters of the network should not change as the network is moved.
- The network should not lead to the generation of additional modes along the transmission line.
3. Least-Squares Solution for the Propagation Constant
4. Experiment and Discussion
4.1. Measurement Setup
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orend, K.; Baer, C.; Musch, T. A Compact Measurement Setup for Material Characterization in W-Band Based on Dielectric Waveguides. Sensors 2022, 22, 5972. [Google Scholar] [CrossRef]
- Hatab, Z.; Gadringer, M.; Habib, M.; Bösch, W. mm-Wave Complex Permittivity Extraction of LTCC Substrate Under the Influence of Surface Roughness. IEEE Trans. Instrum. Meas. 2022, 71, 6001711. [Google Scholar] [CrossRef]
- Liu, X.; Yu, J. Characterization of the dielectric properties of water and methanol in the D-band using a quasi-optical spectroscopy. Sci. Rep. 2019, 9, 18562. [Google Scholar] [CrossRef]
- Roelvink, J.; Trabelsi, S.; Nelson, S.O. Determining complex permittivity from propagation constant measurements with planar transmission lines. Meas. Sci. Technol. 2013, 24, 105001. [Google Scholar] [CrossRef]
- Marks, R.; Williams, D. Characteristic impedance determination using propagation constant measurement. IEEE Microw. Guid. Wave Lett. 1991, 1, 141–143. [Google Scholar] [CrossRef]
- Bogatin, E. Bogatin’s Practical Guide to Transmission Line Design and Characterization for Signal Integrity Applications; Artech House: New York, NY, USA, 2020. [Google Scholar]
- Zhang, J.; Drewniak, J.L.; Pommerenke, D.J.; Koledintseva, M.Y.; DuBroff, R.E.; Cheng, W.; Yang, Z.; Chen, Q.B.; Orlandi, A. Causal RLGC(f) Models for Transmission Lines From Measured S-Parameters. IEEE Trans. Electromagn. Compat. 2010, 52, 189–198. [Google Scholar] [CrossRef]
- Marks, R. A multiline method of network analyzer calibration. IEEE Trans. Microw. Theory Tech. 1991, 39, 1205–1215. [Google Scholar] [CrossRef]
- DeGroot, D.; Walker, D.; Marks, R. Impedance Mismatch Effects on Propagation Constant Measurements. In Proceedings of the 5th Topical Mtg. Electrical Performance of Electronic Packaging, Napa, CA, USA, 28–30 October 1996. [Google Scholar] [CrossRef]
- Kaiser, R.F.; Williams, D.F. Sources of Error in Coplanar-Waveguide TRL Calibrations. In Proceedings of the 54th ARFTG Conference Digest, Atlanta, GA, USA; 2000; pp. 1–6. [Google Scholar] [CrossRef]
- Wong, K.; Hoffmann, J. Improving VNA measurement accuracy by including connector effects in the models of calibration standards. In Proceedings of the 82nd ARFTG Microwave Measurement Conference, Columbus, OH, USA, 18–21 November 2013; pp. 1–7. [Google Scholar] [CrossRef]
- Lewandowski, A.; Wiatr, W.; Gu, D.; Orloff, N.D.; Booth, J. A Multireflect-Thru Method of Vector Network Analyzer Calibration. IEEE Trans. Microw. Theory Tech. 2017, 65, 905–915. [Google Scholar] [CrossRef]
- Popovic, N.B.; Hagerstrom, A.M.; Drisko, J.A.; Booth, J.C.; Garboczi, E.J.; Long, C.J.; Orloff, N.D. Materials Characterization With Multiple Offset Reflects at Frequencies to 110 GHz. IEEE Trans. Microw. Theory Tech. 2020, 68, 184–195. [Google Scholar] [CrossRef]
- Heuermann, H.; Schiek, B. Line network network (LNN): An alternative in-fixture calibration procedure. IEEE Trans. Microw. Theory Tech. 1997, 45, 408–413. [Google Scholar] [CrossRef]
- Rolfes, I.; Schiek, B. Self-calibration procedures for vector network analyzers on the basis of reflection standards. In Proceedings of the 33rd European Microwave Conference Proceedings (IEEE Cat. No.03EX723C), Munich, Germany, 7–9 October 2003; Volume 1, pp. 93–96. [Google Scholar] [CrossRef]
- Zhang, T.; Gu, H.; Zhao, W. A Reformulation of LNN Calibration. In Proceedings of the 2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE), Chengdu, China, 26–29 August 2022; pp. 20–23. [Google Scholar] [CrossRef]
- Orlob, C.; Reinecke, T.; Denicke, E.; Geck, B.; Rolfes, I. Compact Unfocused Antenna Setup for X-Band Free-Space Dielectric Measurements Based on Line-Network-Network Calibration Method. IEEE Trans. Instrum. Meas. 2013, 62, 1982–1989. [Google Scholar] [CrossRef]
- Narayanan, P.M. Microstrip Transmission Line Method for Broadband Permittivity Measurement of Dielectric Substrates. IEEE Trans. Microw. Theory Tech. 2014, 62, 2784–2790. [Google Scholar] [CrossRef]
- Reynoso-Hernandez, J. Unified method for determining the complex propagation constant of reflecting and nonreflecting transmission lines. IEEE Microw. Wirel. Components Lett. 2003, 13, 351–353. [Google Scholar] [CrossRef]
- Koul, A.; Anmula, P.K.R.; Koledintseva, M.Y.; Drewniak, J.L.; Hinaga, S. Improved technique for extracting parameters of low-loss dielectrics on printed circuit boards. In Proceedings of the 2009 IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, USA, 17–21 August 2009; pp. 191–196. [Google Scholar] [CrossRef]
- Fuh, K.F. Broadband Continuous Extraction of Complex Propagation Constants in Methods Using Two-Line Measurements. IEEE Microw. Wirel. Components Lett. 2013, 23, 671–673. [Google Scholar] [CrossRef]
- Hasar, U.C. Propagation Constant Measurement of Microwave Networks With Symmetric/Asymmetric Reflections. IEEE Sens. J. 2018, 18, 4940–4946. [Google Scholar] [CrossRef]
- Engen, G.; Hoer, C. Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer. IEEE Trans. Microw. Theory Tech. 1979, 27, 987–993. [Google Scholar] [CrossRef]
- Fuh, K.F.; Tsai, B.J.; Liu, A.; Liao, E. Wideband extraction of Dk and Df of printed circuit boards using two transmission lines with sufficient length difference. In Proceedings of the 2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, 24–26 October 2012; pp. 287–290. [Google Scholar] [CrossRef]
- Rodríguez-Velásquez, Y.; Sejas-García, S.C.; Torres-Torres, R. A Method of Differences for Determining the Propagation Constant from Multiline Measurements. IEEE Microw. Wirel. Components Lett. 2020, 30, 300–303. [Google Scholar] [CrossRef]
- Stuchly, M.A.; Stuchly, S.S. Coaxial Line Reflection Methods for Measuring Dielectric Properties of Biological Substances at Radio and Microwave Frequencies-A Review. IEEE Trans. Instrum. Meas. 1980, 29, 176–183. [Google Scholar] [CrossRef]
- Kato, Y.; Horibe, M. Broadband Permittivity Measurements up to 170-GHz Using Balanced-Type Circular-Disk Resonator Excited by 0.8-mm Coaxial Line. IEEE Trans. Instrum. Meas. 2019, 68, 1796–1805. [Google Scholar] [CrossRef]
- Kazemipour, A.; Hudlička, M.; Yee, S.K.; Salhi, M.A.; Allal, D.; Kleine-Ostmann, T.; Schrader, T. Design and Calibration of a Compact Quasi-Optical System for Material Characterization in Millimeter/Submillimeter Wave Domain. IEEE Trans. Instrum. Meas. 2015, 64, 1438–1445. [Google Scholar] [CrossRef]
- Baker-Jarvis, J.; Vanzura, E.; Kissick, W. Improved technique for determining complex permittivity with the transmission/reflection method. IEEE Trans. Microw. Theory Tech. 1990, 38, 1096–1103. [Google Scholar] [CrossRef]
- Dudeck, K.; Buckley, L. Dielectric material measurement of thin samples at millimeter wavelengths. IEEE Trans. Instrum. Meas. 1992, 41, 723–725. [Google Scholar] [CrossRef]
- Fenner, R.A.; Rothwell, E.J.; Frasch, L.L. A comprehensive analysis of free-space and guided-wave techniques for extracting the permeability and permittivity of materials using reflection-only measurements. Radio Sci. 2012, 47, 1–3. [Google Scholar] [CrossRef]
- Pometcu, L.; Sharaiha, A.; Benzerga, R.; Tamas, R.D.; Pouliguen, P. Method for material characterization in a non-anechoic environment. Appl. Phys. Lett. 2016, 108, 161604. [Google Scholar] [CrossRef]
- Hatab, Z.; Gadringer, M.; Bösch, W. Improving The Reliability of The Multiline TRL Calibration Algorithm. In Proceedings of the 2022 98th ARFTG Microwave Measurement Conference (ARFTG), Las Vegas, NV, USA, 16–17 January 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Marks, R.B. Formulations of the Basic Vector Network Analyzer Error Model including Switch-Terms. In Proceedings of the 50th ARFTG Conference Digest, Portland, OR, USA, 4–5 December 1997; Volume 32, pp. 115–126. [Google Scholar] [CrossRef]
- Hatab, Z.; Gadringer, M.E.; Bösch, W. Propagation of Linear Uncertainties through Multiline Thru-Reflect-Line Calibration. arXiv 2023, arXiv:2301.09126. [Google Scholar]
- Brewer, J. Kronecker products and matrix calculus in system theory. IEEE Trans. Circuits Syst. 1978, 25, 772–781. [Google Scholar] [CrossRef]
- Wilkinson, J.H. The Algebraic Eigenvalue Problem; Oxford University Press, Inc.: Oxford, UK, 1988. [Google Scholar]
- Chebotarev, A.M.; Teretenkov, A.E. Singular value decomposition for the Takagi factorization of symmetric matrices. Appl. Math. Comput. 2014, 234, 380–384. [Google Scholar] [CrossRef]
- DeGroot, D.; Jargon, J.; Marks, R. Multiline TRL revealed. In Proceedings of the 60th ARFTG Conference Digest, Fall 2002, Washington, DC, USA, 5–6 December 2002; pp. 131–155. [Google Scholar] [CrossRef]
- Arsenovic, A.; Hillairet, J.; Anderson, J.; Forstén, H.; Rieß, V.; Eller, M.; Sauber, N.; Weikle, R.; Barnhart, W.; Forstmayr, F. scikit-rf: An Open Source Python Package for Microwave Network Creation, Analysis, and Calibration [Speaker’s Corner]. IEEE Microw. Mag. 2022, 23, 98–105. [Google Scholar] [CrossRef]
- Argall, F.; Jonscher, A. Dielectric properties of thin films of aluminium oxide and silicon oxide. Thin Solid Film. 1968, 2, 185–210. [Google Scholar] [CrossRef]
- Henley, V.F. Anodic Oxidation of Aluminium and Its Alloys; Henley, V.F., Ed.; The Pergamon Materials Engineering Practice Series; Pergamon: Oxford, UK, 1982. [Google Scholar] [CrossRef]
- Davis, J. Copper and Copper Alloys; ASM Handbooks Series; ASM International: Detroit, MI, USA, 2001. [Google Scholar]
Cases | Offset Lengths (mm) |
---|---|
Case 1 | |
Case 2 | |
Case 3 | |
Case 4 | |
All offsets |
Method | Frequency Range | Solution Method | Measured Standards | Repeatability Accuracy |
---|---|---|---|---|
Multinetwork (this paper). | Broadband. | Matrix decomposition and linear least squares. | Single line with sweepable network. | Very high. |
Multiline [8,33,39]. | Broadband. | Matrix decomposition and linear least squares. | Multiple lines of different lengths. | Good. |
Two lines [19,20,21,22,23]. | Limited. | Quadratic equation. | Two lines of different lengths. | High. |
LNN method [14,15,16,17,18]. | Limited. | Quadratic equation. | Single line with sweepable symmetric and reciprocal network. | Good. |
Multireflect [12,13]. | Broadband. | Non-linear optimization. | Multiple symmetric reflect at different offsets. | Good. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatab, Z.; Abdi, A.; Steinbauer, G.; Gadringer, M.E.; Bösch, W. Propagation Constant Measurement Based on a Single Transmission Line Standard Using a Two-Port VNA. Sensors 2023, 23, 4548. https://doi.org/10.3390/s23094548
Hatab Z, Abdi A, Steinbauer G, Gadringer ME, Bösch W. Propagation Constant Measurement Based on a Single Transmission Line Standard Using a Two-Port VNA. Sensors. 2023; 23(9):4548. https://doi.org/10.3390/s23094548
Chicago/Turabian StyleHatab, Ziad, Arezoo Abdi, Gregor Steinbauer, Michael Ernst Gadringer, and Wolfgang Bösch. 2023. "Propagation Constant Measurement Based on a Single Transmission Line Standard Using a Two-Port VNA" Sensors 23, no. 9: 4548. https://doi.org/10.3390/s23094548
APA StyleHatab, Z., Abdi, A., Steinbauer, G., Gadringer, M. E., & Bösch, W. (2023). Propagation Constant Measurement Based on a Single Transmission Line Standard Using a Two-Port VNA. Sensors, 23(9), 4548. https://doi.org/10.3390/s23094548