Green IoT Event Detection for Carbon-Emission Monitoring in Sensor Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensing Architecture
2.2. Case Study I: Environmental Chemical Sensing
2.3. Case Study II: Energy Monitoring
2.4. Binary Classification Algorithm
3. Results
3.1. Case Study I: Environmental CO Emissions
3.1.1. Calibration
3.1.2. Trial Data
3.2. Case Study II: Energy Monitoring
3.2.1. Labelled Data Set
3.2.2. Trial Data
4. Discussion
4.1. Global Analysis
4.2. Event Detection
4.3. Selectivity and Accuracy
4.3.1. Accuracy of the Event Classification Algorithm
4.3.2. Advantages of the Event Classification Algorithm
4.4. Power Impact
4.4.1. Deployments
4.4.2. Power Savings
4.4.3. Platform Power Comparison
4.5. Energy Harvesting
4.6. Resource Placement
Applications and Advantages of Microcontroller Methods
4.7. Current and Future Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IoT | Internet of Things |
WSN | Wireless Sensor Network |
MCU | Microcontroller Unit |
CO | Carbon Dioxide |
IR | Infra Red |
AI | Artificial Intelligence |
ML | Machine Learning |
GSM | Global System for Mobile |
ALU | Arithmetic Logic Unit |
RMS | Root Mean Square |
EPA | The Environmental Protection Agency |
UNFCCC | United Nations Framework Convention on Climate Change |
IPCC | Intergovernmental Panel on Climate Change |
Appendix A
Appendix A.1. Code for Compiling Global and Event Data
1 typedef struct { 2 uint32_t time; 3 float val; 4 } DataPoint; 5 6 typedef struct { 7 uint32_t counter, counterAboveThreshold, sleepTime; 8 float sum, min, max, threshold; 9 } GlobalStats; 10 11 typedef struct { 12 uint32_t counter, tStart, tEnd; 13 float min, max, sum; 14 } Event; 15 16 typedef struct { 17 uint32_t counter, dpCounter;//, tStart, tEnd; 18 float min, max; 19 float tMax, tSum; 20 float dpSum; 21 } EventStats; 22 23 void updateGlobalStats(DataPoint *dp, GlobalStats *gs) { 24 gs->counter++; 25 gs->sum += dp->val; 26 if(dp->val > gs->threshold) gs->counterAboveThreshold++; 27 if(dp->val < gs->min) gs->min = dp->val; 28 if(dp->val > gs->min) gs->min = dp->val; 29 } 30 void updateEvent(DataPoint *dp, Event *event) { 31 event->counter++; 32 event->sum += dp->val; 33 if(dp->val < event->min) event->min = dp->val; 34 if(dp->val > event->max) event->max = dp->val; 35 } 36 void updateGlobalEventStats(EventStats *es, Event *event) { 37 es->counter++; 38 es->dpCounter += event->counter; 39 es->dpSum += event->sum; 40 es->tSum += event->tEnd - event->tStart; 41 42 if(event->min < es->min) es->min = event->min; 43 if(event->max > es->max) es->max = event->max; 44 if(event->tEnd-event->tStart > es->tMax) 45 es->tMax = event->tEnd-event->tStart; 46 } 47 int main(void) { 48 GlobalStats gs; 49 memset(&gs, 0, sizeof(gs)); 50 gs.min = FLT_MAX; 51 gs.samplingPeriod = 21600; 52 53 EventStats es; 54 memset(&es, 0, sizeof(es)); 55 es.min = FLT_MAX; 56 57 DataPoint dp; 58 uint8_t monitoring = 1; 59 60 while(monitoring == 1) { 61 getDataPoint(&dp); 62 if(dp.val > gs.threshold) { 63 Event event; 64 memset(&event, 0, sizeof(event)); 65 event.min = FLT_MAX; 66 event.tStart = dp.time; 67 while(dp.val > gs.threshold) { 68 updateEvent(&dp, &event); 69 updateGlobalStats(&dp, &gs); 70 sleep(gs.samplingPeriod); 71 getDataPoint(&dp); 72 } 73 event.tEnd = dp.time; 74 } else { 75 updateGlobalStats(&dp, &gs); 76 sleep(gs.samplingPeriod); 77 } 78 } 79 80 printf("Threshold\t%f\n",gs.threshold); 81 printf("Measurements:\t%d\n",gs.counter); 82 printf("#␣>␣Threshold:\t%d\n",gs.counterAboveThreshold); 83 printf("PC␣>␣Threshold:\t%f\n",100.0*gs.counterAboveThreshold/gs.counter); 84 printf("Summation:\t%f\n",gs.sum); 85 printf("Max:\t\t%f\n",gs.max); 86 printf("Min:\t\t%f\n",gs.min); 87 printf("Average:\t%f\n",gs.sum/gs.counter); 88 89 printf("Total␣Number␣of␣Events:\t%d\n",es.counter); 90 printf("Avg.␣Events␣Per␣Day:\t%f\n",es.counter/365.0); 91 printf("Avg.␣Events␣Per␣Week:\t%f\n",es.counter/52.0); 92 printf("Avg.␣Events␣Per␣Month:\t%f\n",es.counter*30/365); 93 printf("Max␣Event␣Value:\t\t%f\n",es.max); 94 printf("Min␣Event␣Value:\t\t%f\n",es.min); 95 printf("Avg.␣Event␣Value:\t\t%f\n",es.dpSum/es.dpCounter); 96 printf("Max␣Duration:\t\t%f\n",es.tMax/86400.0); 97 printf("Avg.␣Duration:\t\t%f\n",(es.tSum/es.counter)/86400.0); 98 } |
References
- Hussain, M.; Butt, A.R.; Uzma, F.; Ahmed, R.; Islam, T.; Yousaf, B. A comprehensive review of sectorial contribution towards greenhouse gas emissions and progress in carbon capture and storage in Pakistan. Greenh. Gases Sci. Technol. 2019, 9, 617–636. [Google Scholar] [CrossRef]
- Jiang, T.; Huang, S.; Yang, J. Structural carbon emissions from industry and energy systems in China: An input-output analysis. J. Clean. Prod. 2019, 240, 118116. [Google Scholar] [CrossRef]
- Ritchie, H. Sector by Sector: Where Do Global Greenhouse Gas Emissions Come from? Our World in Data. 2020. Available online: https://ourworldindata.org/ghg-emissions-by-sector (accessed on 27 December 2023).
- Chen, R.; Kong, Y. A comprehensive review of greenhouse gas based on subject categories. Sci. Total Environ. 2023, 866, 161314. [Google Scholar] [CrossRef] [PubMed]
- Arias, P.; Bellouin, N.; Coppola, E.; Jones, R.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.; Plattner, G.K.; Rogelj, J.; et al. Technical Summary; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 33–144. [Google Scholar] [CrossRef]
- Boesch, H.; Liu, Y.; Tamminen, J.; Yang, D.; Palmer, P.I.; Lindqvist, H.; Cai, Z.; Che, K.; Di Noia, A.; Feng, L.; et al. Monitoring Greenhouse Gases from Space. Remote Sens. 2021, 13, 2700. [Google Scholar] [CrossRef]
- Albreem, M.A.M.; El-Saleh, A.A.; Isa, M.; Salah, W.; Jusoh, M.; Azizan, M.; Ali, A. Green internet of things (IoT): An overview. In Proceedings of the 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA), Putrajaya, Malaysia, 28–30 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Haq, M.A.; Ahmed, A.; Khan, I.; Gyani, J.; Mohamed, A.; Attia, E.A.; Mangan, P.; Pandi, D. Analysis of environmental factors using AI and ML methods. Sci. Rep. 2022, 12, 13267. [Google Scholar] [CrossRef]
- Mohammadi, B.; Mehdizadeh, S.; Ahmadi, F.; Lien, N.T.T.; Linh, N.T.T.; Pham, Q.B. Developing hybrid time series and artificial intelligence models for estimating air temperatures. Stoch. Environ. Res. Risk Assess. 2021, 35, 1189–1204. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C.; Tyagi, S.K.S.; Suryadevara, N.K.; Piuri, V.; Scotti, F.; Zeadally, S. Artificial Intelligence-Based Sensors for Next Generation IoT Applications: A Review. IEEE Sens. J. 2021, 21, 24920–24932. [Google Scholar] [CrossRef]
- Greco, L.; Percannella, G.; Ritrovato, P.; Tortorella, F.; Vento, M. Trends in IoT based solutions for health care: Moving AI to the edge. Pattern Recognit. Lett. 2020, 135, 346–353. [Google Scholar] [CrossRef]
- Mao, K.; Xu, J.; Jin, R.; Wang, Y.; Fang, K. A fast calibration algorithm for Non-Dispersive Infrared single channel carbon dioxide sensor based on deep learning. Comput. Commun. 2021, 179, 175–182. [Google Scholar] [CrossRef]
- Sale, T.; Gallo, S.; Askarani, K.K.; Irianni-Renno, M.; Lyverse, M.; Hopkins, H.; Blotevogel, J.; Burge, S. Real-time soil and groundwater monitoring via spatial and temporal resolution of biogeochemical potentials. J. Hazard. Mater. 2021, 408, 124403. [Google Scholar] [CrossRef]
- Ahmad, R.; Wazirali, R.; Abu-Ain, T. Machine Learning for Wireless Sensor Networks Security: An Overview of Challenges and Issues. Sensors 2022, 22, 4730. [Google Scholar] [CrossRef] [PubMed]
- Praveen Kumar, D.; Amgoth, T.; Annavarapu, C.S.R. Machine learning algorithms for wireless sensor networks: A survey. Inf. Fusion 2019, 49, 1–25. [Google Scholar] [CrossRef]
- Mamandipoor, B.; Majd, M.; Sheikhalishahi, S.; Modena, C.; Osmani, V. Monitoring and detecting faults in wastewater treatment plants using deep learning. Environ. Monit. Assess. 2020, 192, 148. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Bai, X.; Yang, C.; Mao, W.; Xu, X. A review of power consumption models of servers in data centers. Appl. Energy 2020, 265, 114806. [Google Scholar] [CrossRef]
- Lannelongue, L.; Grealey, J.; Inouye, M. Green Algorithms: Quantifying the Carbon Footprint of Computation. Adv. Sci. 2021, 8, 2100707. [Google Scholar] [CrossRef] [PubMed]
- Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 2018, 561, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Andrae, A.S.G.; Edler, T. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges 2015, 6, 117–157. [Google Scholar] [CrossRef]
- Strubell, E.; Ganesh, A.; McCallum, A. Energy and Policy Considerations for Modern Deep Learning Research. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13693–13696. [Google Scholar] [CrossRef]
- Wu, C.J.; Raghavendra, R.; Gupta, U.; Acun, B.; Ardalani, N.; Maeng, K.; Chang, G.; Aga, F.; Huang, J.; Bai, C.; et al. Sustainable AI: Environmental Implications, Challenges and Opportunities. In Proceedings of the Machine Learning and Systems, Santa Clara, CA, USA, 29 August–1 September 2022; Marculescu, D., Chi, Y., Wu, C., Eds.; Volume 4, pp. 795–813. [Google Scholar]
- Bouza, L.; Bugeau, A.; Lannelongue, L. How to estimate carbon footprint when training deep learning models? A guide and review. Environ. Res. Commun. 2023, 5, 115014. [Google Scholar] [CrossRef]
- Lacoste, A.; Luccioni, A.S.; Schmidt, V.; Dandres, T. Quantifying the Carbon Emissions of Machine Learning. arXiv 2019, arXiv:1910.09700. [Google Scholar]
- Dodge, J.; Prewitt, T.; Tachet des Combes, R.; Odmark, E.; Schwartz, R.; Strubell, E.; Luccioni, A.S.; Smith, N.A.; DeCario, N.; Buchanan, W. Measuring the Carbon Intensity of AI in Cloud Instances. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (FAccT’22), New York, NY, USA, 21–24 June 2022; pp. 1877–1894. [Google Scholar] [CrossRef]
- Lim, B.; Zohren, S. Time-series forecasting with deep learning: A survey. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20200209. [Google Scholar] [CrossRef]
- Torres, J.F.; Hadjout, D.; Sebaa, A.; Martínez-Álvarez, F.; Troncoso, A. Deep Learning for Time Series Forecasting: A Survey. Big Data 2021, 9, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Raghunathan, K.R. History of Microcontrollers: First 50 Years. IEEE Micro 2021, 41, 97–104. [Google Scholar] [CrossRef]
- Khan, W.; Abbas, G.; Rahman, K.; Hussain, G.; Edwin, C. Functional Reverse Engineering of Machine Tools; Computers in Engineering Design and Manufacturing; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Khalifeh, A.; Mazunga, F.; Nechibvute, A.; Nyambo, B.M. Microcontroller Unit-Based Wireless Sensor Network Nodes: A Review. Sensors 2022, 22, 8937. [Google Scholar] [CrossRef] [PubMed]
- Abadade, Y.; Temouden, A.; Bamoumen, H.; Benamar, N.; Chtouki, Y.; Hafid, A.S. A Comprehensive Survey on TinyML. IEEE Access 2023, 11, 96892–96922. [Google Scholar] [CrossRef]
- Warden, P.; Situnayake, D. TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers; O’Reilly Media: Sebastopol, CA, USA, 2019. [Google Scholar]
- Dutta, L.; Bharali, S. TinyML Meets IoT: A Comprehensive Survey. Internet Things 2021, 16, 100461. [Google Scholar] [CrossRef]
- Ray, P.P. A review on TinyML: State-of-the-art and prospects. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 1595–1623. [Google Scholar] [CrossRef]
- Atanane, O.; Mourhir, A.; Benamar, N.; Zennaro, M. Smart Buildings: Water Leakage Detection Using TinyML. Sensors 2023, 23, 9210. [Google Scholar] [CrossRef]
- Athanasakis, G.; Filios, G.; Katsidimas, I.; Nikoletseas, S.; Panagiotou, S.H. TinyML-based approach for Remaining Useful Life Prediction of Turbofan Engines. In Proceedings of the 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA), Stuttgart, Germany, 6–9 September 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Gkogkidis, A.; Tsoukas, V.; Papafotikas, S.; Boumpa, E.; Kakarountas, A. A TinyML-based system for gas leakage detection. In Proceedings of the 2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 8–10 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Alajlan, N.N.; Ibrahim, D.M. DDD TinyML: A TinyML-Based Driver Drowsiness Detection Model Using Deep Learning. Sensors 2023, 23, 5696. [Google Scholar] [CrossRef]
- Hayajneh, A.M.; Batayneh, S.; Alzoubi, E.; Alwedyan, M. TinyML Olive Fruit Variety Classification by Means of Convolutional Neural Networks on IoT Edge Devices. AgriEngineering 2023, 5, 2266–2283. [Google Scholar] [CrossRef]
- Cheour, R.; Khriji, S.; abid, M.; Kanoun, O. Microcontrollers for IoT: Optimizations, Computing Paradigms, and Future Directions. In Proceedings of the 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2–16 June 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Bansal, S.; Kumar, D. IoT Ecosystem: A Survey on Devices, Gateways, Operating Systems, Middleware and Communication. Int. J. Wirel. Inf. Netw. 2020, 27, 340–364. [Google Scholar] [CrossRef]
- Anagnostakis, A.G.; Giannakeas, N.; Tsipouras, M.G.; Glavas, E.; Tzallas, A.T. IoT Micro-Blockchain Fundamentals. Sensors 2021, 21, 2784. [Google Scholar] [CrossRef] [PubMed]
- Chao, L.; Peng, X.; Xu, Z.; Zhang, L. Ecosystem of Things: Hardware, Software, and Architecture. Proc. IEEE 2019, 107, 1563–1583. [Google Scholar] [CrossRef]
- Dias, J.P.; Restivo, A.; Ferreira, H.S. Designing and constructing internet-of-Things systems: An overview of the ecosystem. Internet Things 2022, 19, 100529. [Google Scholar] [CrossRef]
- Williams, R. Chapter 18-Microcontroller embedded systems. In Real-Time Systems Development; Williams, R., Ed.; Butterworth-Heinemann: Oxford, UK, 2006; pp. 393–409. [Google Scholar] [CrossRef]
- Diab, M.S.; Rodriguez-Villegas, E. Embedded Machine Learning Using Microcontrollers in Wearable and Ambulatory Systems for Health and Care Applications: A Review. IEEE Access 2022, 10, 98450–98474. [Google Scholar] [CrossRef]
- Lakshman, S.B.; Eisty, N.U. Software Engineering Approaches for TinyML Based IoT Embedded Vision: A Systematic Literature Review. In Proceedings of the 4th International Workshop on Software Engineering Research and Practice for the IoT (SERP4IoT’22), Virtual, 19 May 2022; pp. 33–40. [Google Scholar] [CrossRef]
- Nižetić, S.; Šolić, P.; López-de-Ipiña González-de-Artaza, D.; Patrono, L. Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future. J. Clean. Prod. 2020, 274, 122877. [Google Scholar] [CrossRef] [PubMed]
- Almalki, F.A.; Alsamhi, S.H.; Sahal, R.; Hassan, J.; Hawbani, A.; Rajput, N.S.; Saif, A.; Morgan, J.; Breslin, J. Green IoT for Eco-Friendly and Sustainable Smart Cities: Future Directions and Opportunities. Mob. Netw. Appl. 2023, 28, 178–202. [Google Scholar] [CrossRef]
- Wu, Z.; Qiu, K.; Zhang, J. A Smart Microcontroller Architecture for the Internet of Things. Sensors 2020, 20, 1821. [Google Scholar] [CrossRef]
- Perenc, I.; Jaworski, T.; Duch, P. Teaching programming using dedicated Arduino Educational Board. Comput. Appl. Eng. Educ. 2019, 27, 943–954. [Google Scholar] [CrossRef]
- Mamta; Paul, A.; Tiwari, R. Smart Home Automation System Based on IoT using Chip Microcontroller. In Proceedings of the 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 23–25 March 2022; pp. 564–568. [Google Scholar] [CrossRef]
- Hasan, M.; Anik, M.H.; Chowdhury, S.; Chowdhury, S.A.; Bilash, T.I.; Islam, S. Low-cost Appliance Switching Circuit for Discarding Technical Issues of Microcontroller Controlled Smart Home. Int. J. Sens. Sens. Netw. 2019, 7, 16–22. [Google Scholar] [CrossRef]
- Islam, M.M.; Rahaman, A.; Islam, M.R. Development of Smart Healthcare Monitoring System in IoT Environment. SN Comput. Sci. 2020, 1, 185. [Google Scholar] [CrossRef]
- Abdiakhmetova, Z.; Temirbekova, Z.; Turken, G. Intelligent Monitoring System Based on ATmega Microcontrollers in Healthcare with Stress Reduce Effect. In Computational Methods in Psychiatry; Battineni, G., Mittal, M., Chintalapudi, N., Eds.; Springer Nature: Singapore, 2023; pp. 51–71. [Google Scholar] [CrossRef]
- Sekar, R.A.; Prabakaran, T.; Sudhakar, A.; Kumar, R.S. Industrial automation using IoT. AIP Conf. Proc. 2022, 2393, 020083. [Google Scholar] [CrossRef]
- Kamatchi Sundari, V.; Nithyashri, J.; Kuzhaloli, S.; Subburaj, J.; Vijayakumar, P.; Subha Hency Jose, P. Comparison analysis of IoT based industrial automation and improvement of different processes—Review. Mater. Today Proc. 2021, 45, 2595–2598. [Google Scholar] [CrossRef]
- Fay, C.D.; Wu, L. Cost-Effective 3D Printing of Silicone Structures Using an Advanced Intra-Layer Curing Approach. Technologies 2023, 11, 179. [Google Scholar] [CrossRef]
- Fay, C.D.; Mannering, N.; Jeiranikhameneh, A.; Mokhtari, F.; Foroughi, J.; Baughman, R.H.; Choong, P.F.M.; Wallace, G.G. Wearable Carbon Nanotube-Spandex Textile Yarns for Knee Flexion Monitoring. Adv. Sens. Res. 2023, 2, 2200021. [Google Scholar] [CrossRef]
- Brown, S.; Goulsbra, C.; Evans, M.; Heath, T.; Shuttleworth, E. Low cost CO2 sensing: A simple microcontroller approach with calibration and field use. HardwareX 2020, 8, e00136. [Google Scholar] [CrossRef] [PubMed]
- Devan, P.A.M.; Hussin, F.A.; Ibrahim, R.; Bingi, K.; Nagarajapandian, M. IoT Based Vehicle Emission Monitoring and Alerting System. In Proceedings of the 2019 IEEE Student Conference on Research and Development (SCOReD), Selangor, Malaysia, 15–17 October 2019; pp. 161–165. [Google Scholar] [CrossRef]
- Afroz, U.S.; Khan, M.R.H.; Rahman, M.S.; Jahan, I. An IoT-Based System to Measure Methane and Carbon Dioxide Emissions Along with Temperature and Humidity in Urban Areas. In Computer Networks and Inventive Communication Technologies; Smys, S., Lafata, P., Palanisamy, R., Kamel, K.A., Eds.; Springer Nature: Singapore, 2023; pp. 647–656. [Google Scholar]
- de Vargas-Sansalvador, I.P.; Fay, C.; Phelan, T.; Fernández-Ramos, M.; Capitán-Vallvey, L.; Diamond, D.; Benito-Lopez, F. A new light emitting diode–light emitting diode portable carbon dioxide gas sensor based on an interchangeable membrane system for industrial applications. Anal. Chim. Acta 2011, 699, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Mobaraki, B.; Lozano-Galant, F.; Soriano, R.P.; Castilla Pascual, F.J. Application of Low-Cost Sensors for Building Monitoring: A Systematic Literature Review. Buildings 2021, 11, 336. [Google Scholar] [CrossRef]
- Fay, C.; Doherty, A.R.; Beirne, S.; Collins, F.; Foley, C.; Healy, J.; Kiernan, B.M.; Lee, H.; Maher, D.; Orpen, D.; et al. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration. Sensors 2011, 11, 6603–6628. [Google Scholar] [CrossRef] [PubMed]
- Fay, C.D.; Healy, J.P.; Diamond, D. Advanced IoT Pressure Monitoring System for Real-Time Landfill Gas Management. Sensors 2023, 23, 7574. [Google Scholar] [CrossRef]
- Diamond, D.; Collins, F.; Cleary, J.; Zuliani, C.; Fay, C. Distributed Environmental Monitoring. In Autonomous Sensor Networks: Collective Sensing Strategies for Analytical Purposes; Filippini, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 321–363. [Google Scholar] [CrossRef]
- Collins, F.; Orpen, D.; Fay, C.; Foley, C.; Smeaton, A.F.; Diamond, D. Web-based monitoring of year-length deployments of autonomous gas sensing platforms on landfill sites. In Proceedings of the SENSORS, 2011 IEEE, Limerick, Ireland, 28–31 October 2011; pp. 1620–1623. [Google Scholar] [CrossRef]
- Office of Environmental Enforcement, Environmental Protection Agency. Landfill Manuals—Landfill Monitoring; Online; Environmental Protection Agency: Johnstown Castle, Wexford, Ireland, 2003; p. 40. [Google Scholar]
- Watanabe, M. Gen-AI. J. Calif. Dent. Assoc. 2023, 51, 2251192. [Google Scholar] [CrossRef]
- Rose, S. A Machine Learning Framework for Plan Payment Risk Adjustment. Health Serv. Res. 2016, 51, 2358–2374. [Google Scholar] [CrossRef] [PubMed]
- ourworldindata. Carbon Intensity of Electricity, 2022. Online. 2023. Available online: https://ourworldindata.org/grapher/carbon-intensity-electricity (accessed on 10 December 2023).
- Ember. Em250 Single-Chip ZigBee/802.15.4 Solution Datasheet. Online. 2012. Available online: https://media.digikey.com/pdf/Data%20Sheets/Silicon%20Laboratories%20PDFs/EM250_DS.pdf (accessed on 10 December 2023).
- Texas Instruments. MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x Datasheet. Online. 2009. Available online: https://www.ti.com/lit/ds/symlink/msp430f449.pdf (accessed on 10 December 2023).
- Atmel. ATmega328P Datasheet. Online. 2015. Available online: https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf (accessed on 10 December 2023).
- Raspberry Pi. RP2040 Datasheet. Online. 2022. Available online: https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf (accessed on 10 December 2023).
- Süzen, A.A.; Duman, B.; Şen, B. Benchmark Analysis of Jetson TX2, Jetson Nano and Raspberry PI using Deep-CNN. In Proceedings of the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 26–27 June 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Yokoyama, A.M.; Ferro, M.; de Paula, F.B.; Vieira, V.G.; Schulze, B. Investigating hardware and software aspects in the energy consumption of machine learning: A green AI-centric analysis. Concurr. Comput. Pract. Exp. 2023, 35, e7825. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M.; Rosado, P. Renewable Energy. Our World in Data. 2020. Available online: https://ourworldindata.org/renewable-energy (accessed on 10 December 2023).
- Perez de Vargas-Sansalvador, I.M.; Fay, C.; Fernandez-Ramos, M.D.; Diamond, D.; Benito-Lopez, F.; Capitan-Vallvey, L.F. LED–LED portable oxygen gas sensor. Anal. Bioanal. Chem. 2012, 404, 2851–2858. [Google Scholar] [CrossRef] [PubMed]
- Fay, C.D.; Nattestad, A. Optical Measurements Using LED Discharge Photometry (PEDD Approach): Critical Timing Effects Identified & Corrected. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Fay, C.D.; Nattestad, A. LED PEDD Discharge Photometry: Effects of Software Driven Measurements for Sensing Applications. Sensors 2022, 22, 1526. [Google Scholar] [CrossRef]
- Orpen, D.; Beirne, S.; Fay, C.; Lau, K.T.; Corcoran, B.; Diamond, D. The optimisation of a paired emitter–detector diode optical pH sensing device. Sens. Actuators B Chem. 2011, 153, 182–187. [Google Scholar] [CrossRef]
- Fay, C.D.; Nattestad, A. Advances in Optical Based Turbidity Sensing Using LED Photometry (PEDD). Sensors 2022, 22, 254. [Google Scholar] [CrossRef]
- Fay, C.; Anastasova, S.; Slater, C.; Buda, S.T.; Shepherd, R.; Corcoran, B.; O’Connor, N.E.; Wallace, G.G.; Radu, A.; Diamond, D. Wireless Ion-Selective Electrode Autonomous Sensing System. IEEE Sens. J. 2011, 11, 2374–2382. [Google Scholar] [CrossRef]
- Fay, C.; Lau, K.T.; Beirne, S.; Ó Conaire, C.; McGuinness, K.; Corcoran, B.; O’Connor, N.E.; Diamond, D.; McGovern, S.; Coleman, G.; et al. Wireless aquatic navigator for detection and analysis (WANDA). Sens. Actuators B Chem. 2010, 150, 425–435. [Google Scholar] [CrossRef]
- Szydlo, T.; Nagy, M. Device management and network connectivity as missing elements in TinyML landscape. arXiv 2023, arXiv:2304.11669. [Google Scholar]
- Butun, I.; Österberg, P.; Song, H. Security of the Internet of Things: Vulnerabilities, Attacks, and Countermeasures. IEEE Commun. Surv. Tutor. 2020, 22, 616–644. [Google Scholar] [CrossRef]
- chander, B.; Gopalakrishnan, K. Security Vulnerabilities and Issues of Traditional Wireless Sensors Networks in IoT. In Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm; Peng, S.L., Pal, S., Huang, L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 519–549. [Google Scholar] [CrossRef]
- Hodges, D. Cyber-enabled burglary of smart homes. Comput. Secur. 2021, 110, 102418. [Google Scholar] [CrossRef]
- Parikh, P.P.; Kanabar, M.G.; Sidhu, T.S. Opportunities and challenges of wireless communication technologies for smart grid applications. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–7. [Google Scholar] [CrossRef]
- Abdalzaher, M.S.; Muta, O. A Game-Theoretic Approach for Enhancing Security and Data Trustworthiness in IoT Applications. IEEE Internet Things J. 2020, 7, 11250–11261. [Google Scholar] [CrossRef]
- Pavan, M.; Ostrovan, E.; Caltabiano, A.; Roveri, M. TyBox: An Automatic Design and Code-Generation Toolbox for TinyML Incremental on-Device Learning. ACM Trans. Embed. Comput. Syst. 2023; Just Accepted. [Google Scholar] [CrossRef]
Description | Environmental CO | Energy Monitoring |
---|---|---|
Threshold | 1.5% | 25 A |
Number of Measurements | 1121 | 344,922 |
Summation | 1591.59 | 1,168,664.6 |
Max Value | 12.41% | 48.64 A |
Min Value | 0.0% | 0.69 A |
Average | 1.41% | 3.39 A |
% Measurements > Threshold | 28.46 | 1.16 |
Event Description | Environmental CO | Energy Monitoring |
---|---|---|
Total Number of Events | 70 | 539 |
Sampling Period | 6 h | 1.5 min |
Avg. Events Per Day | 0.192 | 1.47 |
Avg. Events Per Week | 1.34 | 10.37 |
Avg. Events Per Month | 5.75 | 44.92 |
Max Event Value | 12.41% | 48.64 A |
Min Event Value | 1.50% | 28.03 A |
Avg. Event Value | 9.08% | 32.90 A |
Max Duration | 8.25 days | 33.17 min |
Avg. Duration | 1.05 days | 7.25 min |
Description | Environmental CO | Energy Monitoring |
---|---|---|
Avg. TX Current (mA) | 36.992 | 35.5 |
Avg. RX Current (mA) | - | 35.5 |
Avg. TX Time (s) | 22.856 | 0.1 |
Avg. RX Time (s) | - | 0.05 |
Energy per TX/RX (J) | 10.146 | 0.0192 |
Energy for All TX/RX (J) | 11,373.666 | 6622.502 |
Energy for Events TX/RX (J) | 710.22 | 10.3488 |
Energy Savings (%) | 93.756 | 99.844 |
Platform | Type | Power Draw (W) | gCOe (US)/h | Reference |
---|---|---|---|---|
EM250 | Microcontroller | [73] | ||
MSP430 F449 | Microcontroller | [74] | ||
ATmega328P | Microcontroller | [75] | ||
Raspberry Pi-Pico | Microcontroller | [76] | ||
Raspberry Pi-4B | Microprocessor | 2.56–7.30 | 0.94–2.68 | [77] |
NVIDIA Jetson Nano | Edge GPU | 5–10 | 1.84–3.67 | [77] |
NVIDIA Jetson TX2 | Edge GPU | 7.5–15 | 2.75–5.51 | [77] |
NVIDIA Xavier | Edge GPU | 8–15 | 2.94–5.51 | [77] |
Intel Core i7 8700 | Desktop CPU | 52–59 | 19.08–21.65 | [78] |
Nvidia RTX 2080Ti | Desktop GPU | 102–157 | 37.43–57.62 | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fay, C.D.; Corcoran, B.; Diamond, D. Green IoT Event Detection for Carbon-Emission Monitoring in Sensor Networks. Sensors 2024, 24, 162. https://doi.org/10.3390/s24010162
Fay CD, Corcoran B, Diamond D. Green IoT Event Detection for Carbon-Emission Monitoring in Sensor Networks. Sensors. 2024; 24(1):162. https://doi.org/10.3390/s24010162
Chicago/Turabian StyleFay, Cormac D., Brian Corcoran, and Dermot Diamond. 2024. "Green IoT Event Detection for Carbon-Emission Monitoring in Sensor Networks" Sensors 24, no. 1: 162. https://doi.org/10.3390/s24010162
APA StyleFay, C. D., Corcoran, B., & Diamond, D. (2024). Green IoT Event Detection for Carbon-Emission Monitoring in Sensor Networks. Sensors, 24(1), 162. https://doi.org/10.3390/s24010162