Vertical Ground Reaction Forces in Parkinson’s Disease: A Speed-Matched Comparative Analysis with Healthy Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Data Collection and Treatment
2.4. Statistical Analysis
3. Results
3.1. Gait Variables
3.2. Ground Reaction Force in the Stance Phase
3.3. Time to Peak Ground Reaction Force
3.4. Coefficient of Variability
3.4.1. Variability of vGRF
3.4.2. Variability of Time to Peak vGRF
4. Discussion
Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, S.E.; Gibbs, S.; Meadows, C.B.; Abboud, R.J. Classification of the reduced vertical component of the ground reaction force in late stance in cerebral palsy gait. Gait Posture 2011, 34, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Aerts, P.; Goyens, J.; Berillon, G.; D’Août, K.; Druelle, F. From quadrupedal to bipedal walking ‘on the fly’: The mechanics of dynamical mode transition in primates. J. Exp. Biol. 2023, 226, jeb244792. [Google Scholar] [CrossRef] [PubMed]
- Ogihara, N.; Hirasaki, E.; Kumakura, H.; Nakatsukasa, M. Ground-reaction-force profiles of bipedal walking in bipedally trained Japanese monkeys. J. Hum. Evol. 2007, 53, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.D.; Kim, J.G.; Jeon, D.M.; Shin, M.H.; Han, N.; Eom, M.J.; Jo, G.Y. Analysis of Vertical Ground Reaction Force Variables Using Foot Scans in Hemiplegic Patients. Ann. Rehabil. Med. 2015, 39, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Baratin, E.; Sugavaneswaran, L.; Umapathy, K.; Ioana, C.; Krishnan, S. Wavelet-based characterization of gait signal for neurological abnormalities. Gait Posture 2015, 41, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.N.; Garg, A.; Munia, T.T.K.; Fazel-Rezai, R.; Tavakolian, K. Vertical ground reaction force marker for Parkinson’s disease. PLoS ONE 2017, 12, e0175951. [Google Scholar] [CrossRef] [PubMed]
- Farashi, S. Distinguishing between Parkinson’s disease patients and healthy individuals using a comprehensive set of time, frequency and time-frequency features extracted from vertical ground reaction force data. Biomed. Signal Process Control 2020, 62, 102132. [Google Scholar] [CrossRef]
- Khera, P.; Kumar, N. Novel machine learning-based hybrid strategy for severity assessment of Parkinson’s disorders. Med. Biol. Eng. Comput. 2022, 60, 811–828. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Bhidayasiri, R.; van Laar, T. Unmet needs in Parkinson’s disease: New horizons in a changing landscape. Park. Relat. Disord. 2016, 33, S2–S8. [Google Scholar] [CrossRef]
- Alkhatib, R.; Diab, M.; Moslem, B.; Corbier, C.; El Badaoui, M. Gait-Ground Reaction Force Sensors Selection Based on ROC Curve Evaluation. J. Comput. Commun. 2015, 3, 13. [Google Scholar] [CrossRef]
- Guo, Y.; Storm, F.; Zhao, Y.; Billings, S.A.; Pavic, A.; Mazzà, C.; Guo, L.Z. A new proxy measurement algorithm with application to the estimation of vertical ground reaction forces using wearable sensors. Sensors 2017, 17, 2181. [Google Scholar] [CrossRef] [PubMed]
- Penn, I.W.; Sung, W.H.; Lin, P.H.; Wang, J.C.; Chuang, E.; Chuang, T.Y.; Kuo, C.Y. Speed and temporal adaptations during nonmotorized treadmill walking in Parkinson disease and nondisabled individuals. Int. J. Rehabil. Res. 2019, 42, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Andriacchi, T.P.; Ogle, J.A.; Galante, J.O. Walking speed as a basis for normal and abnormal gait measurements. J. Biomech. 1977, 10, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Glaister, B.C.; Bernatz, G.C.; Klute, G.K.; Orendurff, M.S. Video task analysis of turning during activities of daily living. Gait Posture 2007, 25, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Godi, M.; Giardini, M.; Schieppati, M. Walking Along Curved Trajectories. Changes with Age and Parkinson’s Disease. Hints to Rehabilitation. Front. Neurol. 2019, 10, 532. [Google Scholar] [CrossRef]
- Chen, J.L.; Dai, Y.N.; Grimaldi, N.S.; Lin, J.J.; Hu, B.Y.; Wu, Y.F.; Gao, S. Plantar Pressure? Based Insole Gait Monitoring Techniques for Diseases Monitoring and Analysis: A Review. Adv. Mater. Technol. 2022, 7, 2100566. [Google Scholar] [CrossRef]
- Larsen, T.A.; LeWitt, P.A.; Calne, D.B. Theoretical and Practical Issues in Assessment of Deficits and Therapy in Parkinsonism. In Lisuride and Other Dopamine Agonists; Raven: New York, NY, USA, 1983; pp. 363–373. [Google Scholar]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state” A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Godi, M.; Turcato, A.M.; Schieppati, M.; Nardone, A. Test-retest reliability of an insole plantar pressure system to assess gait along linear and curved trajectories. J. Neuroeng. Rehabil. 2014, 11, 95. [Google Scholar] [CrossRef]
- Mullineaux, D.R.; Milner, C.E.; Davis, I.S.; Hamill, J. Normalization of ground reaction forces. J. Appl. Biomech. 2006, 22, 230–233. [Google Scholar] [CrossRef]
- Wannop, J.W.; Worobets, J.T.; Stefanyshyn, D.J. Normalization of ground reaction forces, joint moments, and free moments in human locomotion. J. Appl. Biomech. 2012, 28, 665–676. [Google Scholar] [CrossRef]
- Hausdorff, J.M. Gait dynamics, fractals and falls: Finding meaning in the stride-to-stride fluctuations of human walking. Hum. Mov. Sci. 2007, 26, 555–589. [Google Scholar] [CrossRef] [PubMed]
- Galna, B.; Lord, S.; Rochester, L. Is gait variability reliable in older adults and Parkinson’s disease? Towards an optimal testing protocol. Gait Posture 2013, 37, 580–585. [Google Scholar] [CrossRef]
- Uitti, R.J.; Baba, Y.; Whaley, N.R.; Wszolek, Z.K.; Putzke, J.D. Parkinson disease: Handedness predicts asymmetry. Neurology 2005, 64, 1925–1930. [Google Scholar] [CrossRef] [PubMed]
- Veeraragavan, S.; Gopalai, A.A.; Gouwanda, D.; Ahmad, S.A. Parkinson’s Disease Diagnosis and Severity Assessment Using Ground Reaction Forces and Neural Networks. Front. Physiol. 2020, 11, 587057. [Google Scholar] [CrossRef] [PubMed]
- Farashi, S. Analysis of the stance phase of the gait cycle in Parkinson’s disease and its potency for Parkinson’s disease discrimination. J. Biomech. 2021, 129, 110818. [Google Scholar] [CrossRef]
- Balaji, E.; Brindha, D.; Elumalai, V.K.; Umesh, K. Data-driven gait analysis for diagnosis and severity rating of Parkinson’s disease. Med. Eng. Phys. 2021, 91, 54–64. [Google Scholar] [CrossRef]
- Setiawan, F.; Lin, C.W. Implementation of a Deep Learning Algorithm Based on Vertical Ground Reaction Force Time-Frequency Features for the Detection and Severity Classification of Parkinson’s Disease. Sensors 2021, 21, 5207. [Google Scholar] [CrossRef]
- Patoz, A.; Malatesta, D.; Burtscher, J. Isolating the speed factor is crucial in gait analysis for Parkinson’s disease. Front. Neurosci. 2023, 17, 1119390. [Google Scholar] [CrossRef]
- Manap, H.H.; Tahir, N.M.; Yassin, A.I. Statistical analysis of Parkinson disease gait classification using Artificial Neural Network. In Proceedings of the 2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Bilbao, Spain, 14–17 December 2011; pp. 60–65. [Google Scholar] [CrossRef]
- Baltadjieva, R.; Giladi, N.; Gruendlinger, L.; Peretz, C.; Hausdorff, J.M. Marked alterations in the gait timing and rhythmicity of patients with de novo Parkinson’s disease. Eur. J. Neurosci. 2006, 24, 1815–1820. [Google Scholar] [CrossRef]
- Dubey, M.; Wadhwani, A.K.; Wadhwani, S. Gait based vertical ground reaction force analysis for Parkinson’s disease diagnosis using self organizing map. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 624–636. [Google Scholar]
- Sharifmoradi, K.; Farahpour, N. An assessment of gait spatiotemporal and GRF of Parkinson patients. Health Rehabil. 2016, 1, 29–34. [Google Scholar] [CrossRef]
- Nilsson, J.; Thorstensson, A. Ground reaction forces at different speeds of human walking and running. Acta Physiol. Scand. 1989, 136, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Boyer, K.A.; Johnson, R.T.; Banks, J.J.; Jewell, C.; Hafer, J.F. Systematic review and meta-analysis of gait mechanics in young and older adults. Exp. Gerontol. 2017, 95, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Lacquaniti, F.; Ivanenko, Y.P.; Zago, M. Kinematic control of walking. Arch. Ital. Biol. 2002, 140, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Crompton, R.H.; Alexander, R.M.; Günther, M.M.; Wang, W.J. Characteristics of ground reaction forces in normal and chimpanzee-like bipedal walking by humans. Folia Primatol. 1996, 66, 137–159. [Google Scholar] [CrossRef] [PubMed]
- Feller, K.J.; Peterka, R.J.; Horak, F.B. Sensory Re-weighting for Postural Control in Parkinson’s Disease. Front. Hum. Neurosci. 2019, 13, 126. [Google Scholar] [CrossRef] [PubMed]
- Belluscio, V.; Bergamini, E.; Tramontano, M.; Formisano, R.; Buzzi, M.G.; Vannozzi, G. Does Curved Walking Sharpen the Assessment of Gait Disorders? An Instrumented Approach Based on Wearable Inertial Sensors. Sensors 2020, 14, 5244. [Google Scholar] [CrossRef] [PubMed]
- Turcato, A.M.; Godi, M.; Giordano, A.; Schieppati, M.; Nardone, A. The generation of centripetal force when walking in a circle: Insight from the distribution of ground reaction forces recorded by plantar insoles. J. Neuroeng. Rehabil. 2015, 12, 4. [Google Scholar] [CrossRef]
- Courtine, G.; Schieppati, M. Human walking along a curved path. II. Gait features and EMG patterns. Eur. J. Neurosci. 2003, 18, 191–205. [Google Scholar] [CrossRef]
- Morris, M.E.; McGinley, J.; Huxham, F.; Collier, J.; Iansek, R. Constraints on the kinetic, kinematic and spatiotemporal parameters of gait in Parkinson’s disease. Hum. Mov. Sci. 1999, 18, 461–483. [Google Scholar] [CrossRef]
- Huxham, F.; Gong, J.; Baker, R.; Morris, M.; Iansek, R. Defining spatial parameters for non-linear walking. Gait Posture 2006, 23, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Turcato, A.M.; Godi, M.; Giardini, M.; Arcolin, I.; Nardone, A.; Giordano, A.; Schieppati, M. Abnormal gait pattern emerges during curved trajectories in high-functioning Parkinsonian patients walking in line at normal speed. PLoS ONE 2018, 13, e0197264. [Google Scholar] [CrossRef] [PubMed]
- Eltoukhy, M.; Kuenze, C.; Andersen, M.S.; Oh, J.; Signorile, J. Prediction of ground reaction forces for Parkinson’s disease patients using a kinect-driven musculoskeletal gait analysis model. Med. Eng. Phys. 2017, 50, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Arcolin, I.; Corna, S.; Giardini, M.; Giordano, A.; Nardone, A.; Godi, M. Proposal of a new conceptual gait model for patients with Parkinson’s disease based on factor analysis. Biomed. Eng. Online 2019, 18, 70. [Google Scholar] [CrossRef]
- Chen, P.H.; Wang, R.L.; Liou, D.J.; Shaw, J.S. Gait disorders in Parkinson’s disease: Assessment and management. Int. J. Gerontol. 2013, 7, 189–193. [Google Scholar] [CrossRef]
- Di Biase, L.; Di Santo, A.; Caminiti, M.L.; De Liso, A.; Shah, S.A.; Ricci, L.; Di Lazzaro, V. Gait analysis in Parkinson’s disease: An overview of the most accurate markers for diagnosis and symptoms monitoring. Sensors 2020, 20, 3529. [Google Scholar] [CrossRef]
- Barnett, S.; Cunningham, J.L.; West, S. A comparison of vertical force and temporal parameters produced by an in-shoe pressure measuring system and a force platform. Clin. Biomech. 2001, 16, 353–357. [Google Scholar] [CrossRef]
- Lescano, C.N.; Rodrigo, S.E.; Christian, D.A. A possible parameter for gait clinimetric evaluation in Parkinson’s disease patients. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2016; p. 012019. [Google Scholar] [CrossRef]
PwPD | HS | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sex | Age (years) | Weight (kg) | Height (cm) | H&Y (stage) | Duration (years) | UPDRS III (score) | Side of Onset | Gait Speed (m/s) | Sex | Age (years) | Weight (kg) | Height (cm) | Gait Speed (m/s) | |
1 | F | 80 | 69 | 160 | 2.5 | 13 | 24 | R | 0.72 | F | 69 | 70 | 159 | 0.69 |
2 | M | 76 | 85 | 175 | 2 | 6 | 21 | L | 0.91 | M | 80 | 74 | 161 | 0.87 |
3 | F | 71 | 65 | 165 | 2 | 11 | 22 | L | 0.98 | F | 74 | 65 | 165 | 1.02 |
4 | M | 73 | 100 | 174 | 2 | 7 | 17 | R | 1.05 | M | 67 | 69 | 170 | 1.07 |
5 | F | 79 | 61 | 163 | 2.5 | 11 | 15 | L | 1.06 | F | 72 | 67 | 160 | 1.14 |
6 | F | 70 | 60 | 160 | 2.5 | 9 | 18 | R | 1.12 | M | 84 | 74 | 167 | 1.15 |
7 | M | 59 | 74 | 170 | 2 | 11 | 19 | L | 1.18 | M | 69 | 60 | 160 | 1.16 |
8 | F | 69 | 62 | 168 | 2.5 | 11 | 20 | R | 1.22 | F | 65 | 60 | 167 | 1.18 |
9 | M | 76 | 92 | 165 | 2.5 | 14 | 26 | L | 1.22 | F | 83 | 84 | 170 | 1.18 |
10 | F | 62 | 60 | 157 | 1.5 | 5 | 9 | L | 1.23 | M | 89 | 70 | 162 | 1.20 |
11 | M | 79 | 53 | 170 | 2.5 | 6 | 22 | L | 1.25 | M | 74 | 75 | 167 | 1.24 |
12 | M | 75 | 83 | 178 | 2 | 9 | 15 | R | 1.30 | F | 75 | 60 | 153 | 1.31 |
13 | M | 73 | 92 | 172 | 2.5 | 12 | 27 | L | 1.33 | F | 67 | 70 | 165 | 1.33 |
14 | F | 51 | 90 | 173 | 2 | 10 | 17 | L | 1.33 | F | 70 | 59 | 150 | 1.34 |
15 | M | 81 | 75 | 167 | 2.5 | 8 | 20 | R | 1.45 | F | 63 | 60 | 168 | 1.50 |
16 | M | 72 | 63 | 170 | 1.5 | 5 | 11 | L | 1.52 | F | 60 | 62 | 160 | 1.52 |
17 | M | 64 | 76 | 162 | 2.5 | 4 | 14 | R | 1.53 | M | 75 | 81 | 177 | 1.60 |
18 | F | 75 | 47 | 163 | 1 | 3 | 9 | L | 1.58 | M | 73 | 65 | 164 | 1.63 |
MEAN | 10M; 8F | 71.4 | 72.6 | 167.3 | 2.1 | 8.6 | 18.1 | 7R; 11L | 1.22 | 8M; 10F | 72.7 | 68.1 | 163.6 | 1.23 |
SD | 8.0 | 15.1 | 5.9 | 0.4 | 3.2 | 5.3 | 0.23 | 7.6 | 7.5 | 6.4 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giardini, M.; Turcato, A.M.; Arcolin, I.; Corna, S.; Godi, M. Vertical Ground Reaction Forces in Parkinson’s Disease: A Speed-Matched Comparative Analysis with Healthy Subjects. Sensors 2024, 24, 179. https://doi.org/10.3390/s24010179
Giardini M, Turcato AM, Arcolin I, Corna S, Godi M. Vertical Ground Reaction Forces in Parkinson’s Disease: A Speed-Matched Comparative Analysis with Healthy Subjects. Sensors. 2024; 24(1):179. https://doi.org/10.3390/s24010179
Chicago/Turabian StyleGiardini, Marica, Anna Maria Turcato, Ilaria Arcolin, Stefano Corna, and Marco Godi. 2024. "Vertical Ground Reaction Forces in Parkinson’s Disease: A Speed-Matched Comparative Analysis with Healthy Subjects" Sensors 24, no. 1: 179. https://doi.org/10.3390/s24010179
APA StyleGiardini, M., Turcato, A. M., Arcolin, I., Corna, S., & Godi, M. (2024). Vertical Ground Reaction Forces in Parkinson’s Disease: A Speed-Matched Comparative Analysis with Healthy Subjects. Sensors, 24(1), 179. https://doi.org/10.3390/s24010179