A Survey on the Impact of Intelligent Surfaces in the Terahertz Communication Channel Models
Abstract
:1. Introduction
1.1. Related Works
1.2. Motivation and Contributions
1.3. Organization of the Paper
2. IS in Wireless Communication
2.1. A Historical Perspective
2.2. IS Architecture
2.3. IS Operation
3. THz Channel Modeling
3.1. Deterministic Channel Model for THz Band
3.2. Modeling of Statistical Channels
4. IS-Aided THz Channels
5. Discussions and Research Directions
5.1. Comparative Analysis: Emerging Technologies
5.2. Hardware and Cost Considerations
5.3. Practical Application Examples
5.4. Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akyildiz, I.F.; Kak, A.; Nie, S. 6G and beyond: The future of wireless communications systems. IEEE Access 2020, 8, 133995–134030. [Google Scholar] [CrossRef]
- Wang, C.X.; Huang, J.; Wang, H.; Gao, X.; You, X.; Hao, Y. 6G Wireless Channel Measurements and Models: Trends and Challenges. IEEE Veh. Technol. Mag. 2020, 15, 22–32. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, X.; Han, C.; Wen, Q. Towards intelligent reflecting surface empowered 6G terahertz communications: A survey. China Commun. 2021, 18, 93–119. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Song, H.J.; Nagatsuma, T. Present and Future of Terahertz Communications. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 256–263. [Google Scholar] [CrossRef]
- Seeds, A.J.; Shams, H.; Fice, M.J.; Renaud, C.C. TeraHertz Photonics for Wireless Communications. J. Lightwave Technol. 2015, 33, 579–587. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Jornet, J.M.; Han, C. TeraNets: Ultra-broadband communication networks in the terahertz band. IEEE Wireless Commun. 2014, 21, 130–135. [Google Scholar] [CrossRef]
- He, Y.; Chen, Y.; Zhang, L.; Wong, S.W.; Chen, Z.N. An overview of terahertz antennas. China Commun. 2020, 17, 124–165. [Google Scholar] [CrossRef]
- Siles, G.A.; Riera, J.M.; Garcia-del Pino, P. Atmospheric Attenuation in Wireless Communication Systems at Millimeter and THz Frequencies [Wireless Corner]. IEEE Antennas Propagat. Mag. 2015, 57, 48–61. [Google Scholar] [CrossRef]
- Yang, Y.; Mandehgar, M.; Grischkowsky, D.R. Understanding THz Pulse Propagation in the Atmosphere. IEEE Trans. THz Sci. Technol. 2012, 2, 406–415. [Google Scholar] [CrossRef]
- Jansen, C.; Piesiewicz, R.; Mittleman, D.; Kurner, T.; Koch, M. The Impact of Reflections From Stratified Building Materials on the Wave Propagation in Future Indoor Terahertz Communication Systems. IEEE Trans. Antennas Propagat. 2008, 56, 1413–1419. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, X.; Zhang, B.; Zhang, Y.; Niu, Z.; Kuang, N.; Chen, W.; Li, L.; Li, S. A survey on terahertz communications. China Commun. 2019, 16, 1–35. [Google Scholar] [CrossRef]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.S.; Yuen, C.; de Rosny, J.; Tretyakov, S. Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead. IEEE J. Select. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network. IEEE Commun. Mag. 2020, 58, 106–112. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans. Wireless Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication. IEEE Trans. Wireless Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef]
- Han, Y.; Tang, W.; Jin, S.; Wen, C.K.; Ma, X. Large Intelligent Surface-Assisted Wireless Communication Exploiting Statistical CSI. IEEE Trans. Veh. Technol. 2019, 68, 8238–8242. [Google Scholar] [CrossRef]
- Pan, C.; Ren, H.; Wang, K.; Xu, W.; Elkashlan, M.; Nallanathan, A.; Hanzo, L. Multicell MIMO Communications Relying on Intelligent Reflecting Surface. IEEE Trans. Wireless Commun. 2020, 19, 5218–5233. [Google Scholar] [CrossRef]
- Chen, J.; Liang, Y.C.; Pei, Y.; Guo, H. Intelligent Reflecting Surface: A Programmable Wireless Environment for Physical Layer Security. IEEE Access 2019, 7, 82599–82612. [Google Scholar] [CrossRef]
- Mathanker, S.K.; Weckler, P.R.; Wang, N. Terahertz (THz) Applications in Food and Agriculture: A Review. Trans. ASABE 2013, 56, 1213–1226. [Google Scholar] [CrossRef]
- Lu, X.; Venkatesh, S.; Saeidi, H. A review on applications of integrated terahertz systems. China Commun. 2021, 18, 175–201. [Google Scholar] [CrossRef]
- Siegel, P.H. THz Instruments for Space. IEEE Trans. Antennas Propagat. 2007, 55, 2957–2965. [Google Scholar] [CrossRef]
- Serghiou, D.; Khalily, M.; Brown, T.W.C.; Tafazolli, R. Terahertz Channel Propagation Phenomena, Measurement Techniques and Modeling for 6G Wireless Communication Applications: A Survey, Open Challenges and Future Research Directions. IEEE Commun. Surveys Tuts. 2022, 24, 1957–1996. [Google Scholar] [CrossRef]
- Bilgin, B.A.; Ramezani, H.; Akan, O.B. Human Blockage Model for Indoor Terahertz Band Communication. In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Ning, B.; Chen, Z.; Wang, X.; Mei, W. Codebook-Based Hybrid Beamforming Design for MISOME Wiretap Channel. IEEE Wireless Commun. Lett. 2019, 8, 57–60. [Google Scholar] [CrossRef]
- Huang, H.; Hu, S.; Yang, T.; Yuan, C. Full-Duplex Nonorthogonal Multiple Access with Layers-Based Optimized Mobile Relays Subsets Algorithm in B5G/6G Ubiquitous Networks. IEEE Internet Things J. 2021, 8, 15081–15095. [Google Scholar] [CrossRef]
- Okogbaa, F.C.; Ahmed, Q.Z.; Khan, F.A.; Abbas, W.B.; Che, F.; Zaidi, S.A.R.; Alade, T. Design and Application of Intelligent Reflecting Surface (IRS) for Beyond 5G Wireless Networks: A Review. Sensors 2022, 22, 2436. [Google Scholar] [CrossRef]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.S.; Zhang, R. Wireless Communications Through Reconfigurable Intelligent Surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Papasotiriou, E.N.; Boulogeorgos, A.A.A.; Stratakou, A.; Alexiou, A. Performance evaluation of reconfigurable intelligent surface assisted D-band wireless communication. In Proceedings of the 2020 IEEE 3rd 5G World Forum (5GWF), Bangalore, India, 10–12 September 2020; pp. 360–365. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, W.; Ma, X.; Li, Z.; Chi, Y.; Han, C. Taylor Expansion Aided Gradient Descent Schemes for IRS-Enabled Terahertz MIMO Systems. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Seoul, Republic of Korea, 25 June 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Boulogeorgos, A.A.A.; Alexiou, A. Pathloss modeling of reconfigurable intelligent surface assisted THz wireless systems. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Dovelos, K.; Assimonis, S.D.; Quoc Ngo, H.; Bellalta, B.; Matthaiou, M. Intelligent Reflecting Surfaces at Terahertz Bands: Channel Modeling and Analysis. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 9 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Ning, B.; Chen, Z.; Chen, W.; Du, Y. Channel Estimation And Transmission For Intelligent Reflecting Surface Assisted THz Communications. In Proceedings of the ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–7. [Google Scholar]
- Ma, X.; Chen, Z.; Chi, Y.; Chen, W.; Du, L.; Li, Z. Channel Estimation for Intelligent Reflecting Surface Enabled Terahertz MIMO Systems. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 21 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Ma, X.; Chen, Z.; Chen, W.; Li, Z.; Chi, Y.; Han, C.; Li, S. Joint Channel Estimation and Data Rate Maximization for Intelligent Reflecting Surface Assisted Terahertz MIMO Communication Systems. IEEE Access 2020, 8, 99565–99581. [Google Scholar] [CrossRef]
- Souto, V.D.P.; Souza, R.D.; Uchôa-Filho, B.F.; Li, Y. Intelligent Reflecting Surfaces Beamforming Optimization with Statistical Channel Knowledge. Sensors 2022, 22, 2390. [Google Scholar] [CrossRef]
- Wang, P.; Fang, J.; Zhang, W.; Li, H. Fast Beam Training and Alignment for IRS-Assisted Millimeter Wave/Terahertz Systems. IEEE Trans. Wireless Commun. 2021. [Google Scholar]
- Qiao, J.; Alouini, M.S. Secure Transmission for Intelligent Reflecting Surface-Assisted mmWave and Terahertz Systems. IEEE Wireless Commun. Lett. 2020, 9, 1743–1747. [Google Scholar] [CrossRef]
- Ning, B.; Chen, Z.; Chen, W.; Li, L. Improving Security of THz Communication with Intelligent Reflecting Surface. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Naeem, F.; Ali, M.; Kaddoum, G.; Huang, C.; Yuen, C. Security and Privacy for Reconfigurable Intelligent Surface in 6G: A Review of Prospective Applications and Challenges. IEEE Open J. Commun. Soc. 2023, 4, 1196–1217. [Google Scholar] [CrossRef]
- Özdogan, Ö.; Björnson, E.; Larsson, E.G. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling. IEEE Wireless Commun. Lett. 2019, 9, 581–585. [Google Scholar] [CrossRef]
- Yan, W.; Yuan, X.; Kuai, X. Passive beamforming and information transfer via large intelligent surface. IEEE Wireless Commun. Lett. 2019, 9, 533–537. [Google Scholar] [CrossRef]
- Yang, F.; Pitchappa, P.; Wang, N. Terahertz Reconfigurable Intelligent Surfaces (RISs) for 6G Communication Links. Micromachines 2022, 13, 285. [Google Scholar] [CrossRef]
- Jian, M.; Alexandropoulos, G.C.; Basar, E.; Huang, C.; Liu, R.; Liu, Y.; Yuen, C. Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques. Intell. Converg. Netw. 2022, 3, 1–32. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, J.; Long, R.; He, Z.; Lin, X.; Huang, C.; Liu, S.; Shen, X.; Di Renzo, M. Reconfigurable intelligent surfaces for smart wireless environments: Channel estimation, system design and applications in 6G networks. Sci. China Inf. Sci. 2021, 64, 200301. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Zhai, W.; Sun, S.; Niyato, D.; Lam, K.Y. A Survey of 6G Wireless Communications: Emerging Technologies. In Proceedings of the Advances in Information and Communication; Arai, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 150–170. [Google Scholar]
- Sarieddeen, H.; Alouini, M.S.; Al-Naffouri, T.Y. An Overview of Signal Processing Techniques for Terahertz Communications. Proc. IEEE 2021, 109, 1628–1665. [Google Scholar] [CrossRef]
- Chen, H.; Sarieddeen, H.; Ballal, T.; Wymeersch, H.; Alouini, M.S.; Al-Naffouri, T.Y. A Tutorial on Terahertz-Band Localization for 6G Communication Systems. IEEE Commun. Surveys Tuts. 2022, 24, 1780–1815. [Google Scholar] [CrossRef]
- Chaccour, C.; Soorki, M.N.; Saad, W.; Bennis, M.; Popovski, P.; Debbah, M. Seven Defining Features of Terahertz (THz) Wireless Systems: A Fellowship of Communication and Sensing. IEEE Commun. Surveys Tuts. 2022, 24, 967–993. [Google Scholar] [CrossRef]
- Du, H.; Zhang, J.; Guan, K.; Niyato, D.; Jiao, H.; Wang, Z.; Kürner, T. Performance and Optimization of Reconfigurable Intelligent Surface Aided THz Communications. IEEE Trans. Commun. 2022, 70, 3575–3593. [Google Scholar] [CrossRef]
- Dovelos, K.; Assimonis, S.D.; Ngo, H.Q.; Bellalta, B.; Matthaiou, M. Electromagnetic Modeling of Holographic Intelligent Reflecting Surfaces at Terahertz Bands. In Proceedings of the 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 31 October–3 November 2021; pp. 415–420. [Google Scholar]
- Wan, Z.; Gao, Z.; Gao, F.; Di Renzo, M.; Alouini, M.S. Terahertz massive MIMO with holographic reconfigurable intelligent surfaces. IEEE Trans. Commun. 2021, 69, 4732–4750. [Google Scholar] [CrossRef]
- Papasotiriou, E.N.; Boulogeorgos, A.A.A.; Alexiou, A. On the Impact of Beam Misalignment in Reconfigurable Intelligent Surface Assisted THz Systems. In Proceedings of the 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, 12 November 2021; pp. 121–125. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, K.; Pan, C.; Zhu, H.; Wang, J. UAV-assisted and intelligent reflecting surfaces-supported terahertz communications. IEEE Wireless Commun. Lett. 2021, 10, 1256–1260. [Google Scholar] [CrossRef]
- Hu, S.; Rusek, F.; Edfors, O. Beyond Massive MIMO: The Potential of Positioning with Large Intelligent Surfaces. IEEE Trans. Signal Processing 2018, 66, 1761–1774. [Google Scholar] [CrossRef]
- Hu, S.; Rusek, F.; Edfors, O. Capacity Degradation with Modeling Hardware Impairment in Large Intelligent Surface. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef]
- Faisal, A.; Sarieddeen, H.; Dahrouj, H.; Al-Naffouri, T.Y.; Alouini, M.S. Ultramassive MIMO systems at terahertz bands: Prospects and challenges. IEEE Veh. Technol. Mag. 2020, 15, 33–42. [Google Scholar] [CrossRef]
- Xiao, H.; Du, H.; Zhang, J.; Guan, K.; Ai, B. Outage Probability of Reconfigurable Intelligent Surface Aided THz Communications. In Proceedings of the 2021 IEEE/CIC International Conference on Communications in China (ICCC), Xiamen, China, 28–30 July 2021; pp. 415–420. [Google Scholar] [CrossRef]
- Al-Hilo, A.; Shokry, M.; Elhattab, M.; Assi, C.; Sharafeddine, S. Reconfigurable intelligent surface enabled vehicular communication: Joint user scheduling and passive beamforming. IEEE Trans. Veh. Technol. 2022, 71, 2333–2345. [Google Scholar] [CrossRef]
- Majumdar, A.K. Chapter 7 - Principles and Implementation of Secure Free-Space Optical Wireless Communications. In Optical Wireless Communications for Broadband Global Internet Connectivity; Majumdar, A.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 207–243. [Google Scholar] [CrossRef]
- Di Renzo, M.; Danufane, F.H.; Xi, X.; De Rosny, J.; Tretyakov, S. Analytical modeling of the path-loss for reconfigurable intelligent surfaces–anomalous mirror or scatterer? In Proceedings of the 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA, 26–29 May 2020; pp. 1–5. [Google Scholar]
- ETSI. Industry Specification Group (ISG) on Reconfigurable Intelligent Surfaces (RIS). 2022. Available online: https://www.etsi.org/committee/1966-ris (accessed on 9 May 2022).
- Wu, L.A.; LONG, G.L.; Gong, Q.; Guo, G.C. Optics in Ancient China. AAPPS Bulletin 2015, 25, 1–3. [Google Scholar]
- Smith, D.R.; Padilla, W.J.; Vier, D.; Nemat-Nasser, S.C.; Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Physical Rev. Lett. 2000, 84, 4184. [Google Scholar] [CrossRef]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef]
- Schurig, D.; Mock, J.J.; Justice, B.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef]
- Chang, K.; il Kwak, S.; Yoon, Y.J. Equivalent circuit modeling of active frequency selective surfaces. In Proceedings of the 2008 IEEE Radio and Wireless Symposium, Orlando, FL, USA, 2–24 January 2008; pp. 663–666. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Physical Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Edalati, A.; Denidni, T.A. High-Gain Reconfigurable Sectoral Antenna Using an Active Cylindrical FSS Structure. IEEE Trans. Antennas Propagat. 2011, 59, 2464–2472. [Google Scholar] [CrossRef]
- Subrt, L.; Pechac, P. Controlling propagation environments using Intelligent Walls. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Kaina, N.; Dupre, M.; Lerosey, G.; Fink, M. Shaping complex microwave fields in reverberating media with binary tunable metasurfaces. Sci. Rep. 2014, 4, 6693. [Google Scholar] [CrossRef]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light. Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, X.; Hu, Z.; Al-Aqeeli, M.; Alburaikan, A. Design of broadband and tunable terahertz absorbers based on graphene metasurface: Equivalent circuit model approach. Microw. Antennas Propag. IET 2015, 9, 307–312. [Google Scholar] [CrossRef]
- Hum, S.V.; Okoniewski, M.; Davies, R.J. Modeling and Design of Electronically Tunable Reflectarrays. IEEE Trans. Antennas Propagat. 2007, 55, 2200–2210. [Google Scholar] [CrossRef]
- Tan, X.; Sun, Z.; Jornet, J.M.; Pados, D. Increasing indoor spectrum sharing capacity using smart reflect-array. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, H.; Cao, X.; Yang, F.; Gao, J.; Xu, S.; Li, M.; Chen, X.; Zhao, Y.; Zheng, Y.; Li, S. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep. 2016, 6, 35692. [Google Scholar] [CrossRef]
- Xiong, X.; Chan, J.; Yu, E.; Kumari, N.; Sani, A.A.; Zheng, C.; Zhou, X. Customizing Indoor Wireless Coverage via 3D-Fabricated Reflectors. In Proceedings of the BuildSys ’17’: 4th ACM International Conference on Systems for Energy-Efficient Built Environments, Delft, The Netherlands, 8–9 November 2017; Association for Computing Machinery: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Chan, J.; Zheng, C.; Zhou, X. 3D Printing Your Wireless Coverage. In Proceedings of the HotWireless ’15’: 2nd International Workshop on Hot Topics in Wireless, Paris, France, 11 September 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.Q.; Liu, S.; Zhang, Q.; Zhao, J.; Dai, J.Y.; Bai, G.D.; Wan, X.; Cheng, Q.; Castaldi, G.; et al. Space-time-coding digital metasurfaces. Nat. Commun. 2018, 9, 4334. [Google Scholar] [CrossRef]
- Hu, S.; Rusek, F.; Edfors, O. The Potential of Using Large Antenna Arrays on Intelligent Surfaces. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, NSW, Australia, 4–7 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Hu, S.; Rusek, F.; Edfors, O. Beyond Massive MIMO: The Potential of Data Transmission with Large Intelligent Surfaces. IEEE Trans. Signal Processing 2018, 66, 2746–2758. [Google Scholar] [CrossRef]
- Alegría, J.V.; Rusek, F. Achievable Rate with Correlated Hardware Impairments in Large Intelligent Surfaces. In Proceedings of the 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Le gosier, Guadeloupe, 15–18 December 2019; pp. 559–563. [Google Scholar] [CrossRef]
- Liaskos, C.; Nie, S.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I. Realizing Wireless Communication Through Software-Defined HyperSurface Environments. In Proceedings of the 2018 IEEE 19th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Chania, Greece, 12–15 June 2018; pp. 14–15. [Google Scholar] [CrossRef]
- Arun, V.; Balakrishnan, H. RFocus: Beamforming Using Thousands of Passive Antennas. In Proceedings of the 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), Santa Clara, CA, USA, 25–27 February 2020; pp. 1047–1061. [Google Scholar]
- NTT DOCOMO INC. DOCOMO conducts world’s first successful trial of transparent dynamic metasurface, 2020.
- Zhang, S.; Zhang, H.; Di, B.; Tan, Y.; Han, Z.; Song, L. Beyond intelligent reflecting surfaces: Reflective-transmissive metasurface aided communications for full-dimensional coverage extension. IEEE Trans. Veh. Technol. 2020, 69, 13905–13909. [Google Scholar] [CrossRef]
- Harnessing Multipath Propagation in Wireless Networks: A Meta-Surface Transformation of Wireless Networks Into Smart Reconfigurable Radio Environments. European Commission, CORDIS, EU Research Results, Centre National de La Recherche Scientifique CNRS. Available online: https://doi.org/10.3030/891030 (accessed on 11 December 2022).
- De Lima, C.; Belot, D.; Berkvens, R.; Bourdoux, A.; Dardari, D.; Guillaud, M.; Isomursu, M.; Lohan, E.S.; Miao, Y.; Barreto, A.N.; et al. Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges. IEEE Access 2021, 9, 26902–26925. [Google Scholar] [CrossRef]
- Huq, K.M.S.; Busari, S.A.; Rodriguez, J.; Frascolla, V.; Bazzi, W.; Sicker, D.C. Terahertz-Enabled Wireless System for Beyond-5G Ultra-Fast Networks: A Brief Survey. IEEE Netw. 2019, 33, 89–95. [Google Scholar] [CrossRef]
- Rikkinen, K.; Kyosti, P.; Leinonen, M.E.; Berg, M.; Parssinen, A. THz Radio Communication: Link Budget Analysis toward 6G. IEEE Commun. Mag. 2020, 58, 22–27. [Google Scholar] [CrossRef]
- Mulloni, V.; Donelli, M. Chipless RFID sensors for the Internet of Things: Challenges and opportunities. Sensors 2020, 20, 2135. [Google Scholar] [CrossRef]
- Han, C.; Chen, Y. Propagation Modeling for Wireless Communications in the Terahertz Band. IEEE Commun. Mag. 2018, 56, 96–101. [Google Scholar] [CrossRef]
- Han, C.; Bicen, A.O.; Akyildiz, I.F. Multi-Ray Channel Modeling and Wideband Characterization for Wireless Communications in the Terahertz Band. IEEE Trans. Wireless Commun. 2015, 14, 2402–2412. [Google Scholar] [CrossRef]
- Kasai, Y.; Seta, T. Terahertz-Wave Propagation Model. J. Natl. Inst. Inf. Commun. Technol. Vol. 2008, 55, 73–77. [Google Scholar]
- Zhao, Y.; Hao, Y.; Parini, C. FDTD Characterization of UWB Indoor Radio Channel Including Frequency Dependent Antenna Directivities. IEEE Antennas Wireless Propagat. Lett. 2007, 6, 191–194. [Google Scholar] [CrossRef]
- Chung, Y.S.; Cheon, C.; Son, J.H.; Hahn, S.Y. FDTD analysis of propagation characteristics of terahertz electromagnetic pulses. IEEE Trans. Magn. 2000, 36, 951–955. [Google Scholar] [CrossRef]
- Piesiewicz, R.; Jansen, C.; Mittleman, D.; Kleine-Ostmann, T.; Koch, M.; Kurner, T. Scattering analysis for the modeling of THz communication systems. IEEE Trans. Antennas Propagat. 2007, 55, 3002–3009. [Google Scholar] [CrossRef]
- Molisch, A. Ultrawideband propagation channels-theory, measurement, and modeling. IEEE Trans. Veh. Technol. 2005, 54, 1528–1545. [Google Scholar] [CrossRef]
- Jornet, J.M.; Akyildiz, I.F. Channel Modeling and Capacity Analysis for Electromagnetic Wireless Nanonetworks in the Terahertz Band. IEEE Trans. Wireless Commun. 2011, 10, 3211–3221. [Google Scholar] [CrossRef]
- Stratton, J.A. Electromagnetic Theory; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 33. [Google Scholar]
- Priebe, S.; Kannicht, M.; Jacob, M.; Kürner, T. Ultra broadband indoor channel measurements and calibrated ray tracing propagation modeling at THz frequencies. J. Commun. Netw. 2013, 15, 547–558. [Google Scholar] [CrossRef]
- Jakes, W.C.; Cox, D.C. Microwave Mobile Communications; Wiley-IEEE Press: Hoboken, NJ, USA, 1994. [Google Scholar]
- Nakagami, M. The m-distribution—A General Formula Of Intensity Distribution of rapid fading. In Statistical Methods In Radio Wave Propagation; Elsevier: Amsterdam, The Netherlands, 1960; pp. 3–36. [Google Scholar]
- Rice, S. Probability distributions for noise plus several sine waves-The problem of computation. IEEE Trans. Commun. 1974, 22, 851–853. [Google Scholar] [CrossRef]
- Priebe, S.; Kurner, T. Stochastic Modeling of THz Indoor Radio Channels. IEEE Trans. Wireless Commun. 2013, 12, 4445–4455. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Han, C.; Yu, Z.; Wang, G. Channel Measurement and Ray-Tracing-Statistical Hybrid Modeling for Low-Terahertz Indoor Communications. IEEE Trans. Wireless Commun. 2021, 20, 8163–8176. [Google Scholar] [CrossRef]
- Tasolamprou, A.C.; Pitilakis, A.; Abadal, S.; Tsilipakos, O.; Timoneda, X.; Taghvaee, H.; Sajjad Mirmoosa, M.; Liu, F.; Liaskos, C.; Tsioliaridou, A.; et al. Exploration of Intercell Wireless Millimeter-Wave Communication in the Landscape of Intelligent Metasurfaces. IEEE Access 2019, 7, 122931–122948. [Google Scholar] [CrossRef]
- Kim, S.; Zajić, A. Characterization of 300-GHz Wireless Channel on a Computer Motherboard. IEEE Trans. Antennas Propagat. 2016, 64, 5411–5423. [Google Scholar] [CrossRef]
- Khademi, S.; Chepuri, S.P.; Irahhauten, Z.; Janssen, G.J.; van der Veen, A.J. Channel Measurements and Modeling for a 60 GHz Wireless Link within a Metal Cabinet. IEEE Trans. Wireless Commun. 2015, 14, 5098–5110. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Han, C.; Nie, S. Combating the Distance Problem in the Millimeter Wave and Terahertz Frequency Bands. IEEE Commun. Mag. 2018, 56, 102–108. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Di Renzo, M.; Al-Dhahir, N. Reconfigurable intelligent surfaces: Principles and opportunities. IEEE Commun. Surveys Tuts. 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- Boulogeorgos, A.A.A.; Alexiou, A. Coverage analysis of reconfigurable intelligent surface assisted THz wireless systems. IEEE Open J. Veh. Technol. 2021, 2, 94–110. [Google Scholar] [CrossRef]
- Achouri, K.; Khan, B.A.; Gupta, S.; Lavigne, G.; Salem, M.A.; Caloz, C. Synthesis of Electromagnetic Metasurfaces: Principles and Illustrations. arXiv 2015, arXiv:1510.05997. [Google Scholar] [CrossRef]
- Joonas, K.; Janne, L.; Markku, J. A line-of-sight channel model for the 100–450 gigahertz frequency band. EURASIP J. Wirel. Commun. Netw. 2021, 2021, 1–15. [Google Scholar]
- Boulogeorgos, A.A.A.; Alexiou, A. On the Ergodic Secrecy Capacity of Reconfigurable Intelligent Surface Aided Wireless Systems Under Mixture Gamma Fading. In Proceedings of the 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, UK, 26–29 March 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Boulogeorgos, A.A.A.; Alexiou, A. Performance analysis of reconfigurable intelligent surface-assisted wireless systems and comparison with relaying. IEEE Access 2020, 8, 94463–94483. [Google Scholar] [CrossRef]
- Van Chien, T.; Papazafeiropoulos, A.K.; Tu, L.T.; Chopra, R.; Chatzinotas, S.; Ottersten, B. Outage probability analysis of IRS-assisted systems under spatially correlated channels. IEEE Wireless Commun. Lett. 2021, 10, 1815–1819. [Google Scholar] [CrossRef]
- Li, S.; Yan, S.; Bariah, L.; Muhaidat, S.; Wang, A. IRS-Assisted Full Duplex Systems Over Rician and Nakagami Fading Channels. IEEE Open J. Veh. Technol. 2023, 4, 217–229. [Google Scholar] [CrossRef]
- Bao, T.; Wang, H.; Yang, H.C.; Wang, W.J.; Hasna, M.O. Performance analysis of RIS-aided communication systems over the sum of cascaded Rician fading with imperfect CSI. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 399–404. [Google Scholar]
- Ni, Y.; Zhao, H.; Liu, Y.; Wang, J.; Gui, G.; Zhang, H. Analysis of RIS-Aided Communications Over Nakagami-m Fading Channels. IEEE Trans. Veh. Technol. 2023, 72, 8709–8721. [Google Scholar] [CrossRef]
- Nguyen, B.C.; Hoang, T.M.; Van Vinh, N.; Luu, G.T. On performance of multi-RIS assisted multi-user nonorthogonal multiple access system over Nakagami-m fading channels. Computer Commun. 2023, 197, 294–305. [Google Scholar] [CrossRef]
- Ibrahim, H.; Tabassum, H.; Nguyen, U.T. Exact coverage analysis of intelligent reflecting surfaces with Nakagami-m channels. IEEE Trans. Veh. Technol. 2021, 70, 1072–1076. [Google Scholar] [CrossRef]
- Al-Rimawi, A.; Al-Dweik, A. On the Performance of RIS-Assisted Communications with Direct Link Over κ-μ Shadowed Fading. IEEE Open J. Commun. Soc. 2022, 3, 2314–2328. [Google Scholar] [CrossRef]
- Romero-Jerez, J.M.; Lopez-Martinez, F.J.; Paris, J.F.; Goldsmith, A.J. The fluctuating two-ray fading model: Statistical characterization and performance analysis. IEEE Trans. Wireless Commun. 2017, 16, 4420–4432. [Google Scholar] [CrossRef]
- Ji, Z.; Yeoh, P.L.; Zhang, D.; Chen, G.; Zhang, Y.; He, Z.; Yin, H. Secret key generation for intelligent reflecting surface assisted wireless communication networks. IEEE Trans. Veh. Technol. 2020, 70, 1030–1034. [Google Scholar] [CrossRef]
- Tekbiyik, K.; Kurt, G.K.; Ektı, A.R.; Yanikomeroglu, H. Reconfigurable Intelligent Surfaces Empowered THz Communication in LEO Satellite Networks. IEEE Access 2022, 10, 121957–121969. [Google Scholar] [CrossRef]
- Huo, Y.; Dong, X.; Ferdinand, N. Distributed Reconfigurable Intelligent Surfaces for Energy-Efficient Indoor Terahertz Wireless Communications. IEEE Internet Things J. 2023, 10, 2728–2742. [Google Scholar] [CrossRef]
- Sun, G.; Yan, W.; Hao, W.; Huang, C.; Yuen, C. Beamforming Design for the Distributed RISs-Aided THz Communications with Double-Layer True Time Delays. IEEE Trans. Veh. Technol. 2023, 1–15. [Google Scholar] [CrossRef]
- Van Chien, T.; Ngo, H.Q.; Chatzinotas, S.; Di Renzo, M.; Ottersten, B. RIS and cell-free massive MIMO: A marriage for harsh propagation environments. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [Google Scholar]
- Saqib, N.U.; Hou, S.; Chae, S.H.; Jeon, S.W. Reconfigurable Intelligent Surface Aided Hybrid Beamforming: Optimal Placement and Beamforming Design. arXiv 2023, arXiv:2303.11763. [Google Scholar]
- Imani, M.F.; Abadal, S.; del Hougne, P. Metasurface-Programmable Wireless Network-On-Chip. Adv. Sci. 2022, 9, 2201458. [Google Scholar] [CrossRef]
- Wong, K.K.; Tong, K.F.; Shen, Y.; Chen, Y.; Zhang, Y. Bruce Lee-inspired fluid antenna system: Six research topics and the potentials for 6G. Front. Commun. Netw. 2022, 3, 853416. [Google Scholar] [CrossRef]
- Wong, K.K.; Shojaeifard, A.; Tong, K.F.; Zhang, Y. Fluid antenna systems. IEEE Trans. Wireless Commun. 2020, 20, 1950–1962. [Google Scholar] [CrossRef]
- Tlebaldiyeva, L.; Arzykulov, S.; Rabie, K.M.; Li, X.; Nauryzbayev, G. Outage performance of fluid antenna system (FAS)-aided terahertz communication networks. arXiv 2023, arXiv:2301.08904. [Google Scholar]
- Khammassi, M.; Kammoun, A.; Alouini, M.S. A New Analytical Approximation of the Fluid Antenna System Channel. IEEE Trans. Wireless Commun. 2023; Early Access. [Google Scholar] [CrossRef]
- Chai, Z.; Wong, K.K.; Tong, K.F.; Chen, Y.; Zhang, Y. Port Selection for Fluid Antenna Systems. IEEE Commun. Lett. 2022, 26, 1180–1184. [Google Scholar] [CrossRef]
- Stevenson, R.A.; Bily, A.H.; Cure, D.; Sazegar, M.; Kundtz, N. 55.2: Invited Paper: Rethinking Wireless Communications: Advanced Antenna Design Using LCD Technology. In Proceedings of the SID Symposium Digest Of Technical Papers; Wiley Online Library: Hoboken, NJ, USA, 2015; Volume 46, pp. 827–830. [Google Scholar]
- Wu, J.; Shen, Z.; Ge, S.; Chen, B.; Shen, Z.; Wang, T.; Zhang, C.; Hu, W.; Fan, K.; Padilla, W.; et al. Liquid crystal programmable metasurface for terahertz beam steering. Appl. Phys. Letters 2020, 116, 131104. [Google Scholar] [CrossRef]
- Elhoushy, S.; Ibrahim, M.; Hamouda, W. Cell-free massive MIMO: A survey. IEEE Commun. Surv. Tutor. 2021, 24, 492–523. [Google Scholar] [CrossRef]
- Du, J.; Jiang, C.; Wang, J.; Ren, Y.; Debbah, M. Machine Learning for 6G Wireless Networks: Carrying Forward Enhanced Bandwidth, Massive Access, and Ultrareliable/Low-Latency Service. IEEE Veh. Technol. Mag. 2020, 15, 122–134. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Han, C.; Hu, Z.; Nie, S.; Jornet, J.M. Terahertz Band Communication: An Old Problem Revisited and Research Directions for the Next Decade. IEEE Trans. Commun. 2022, 70, 4250–4285. [Google Scholar] [CrossRef]
- Song, H.J.; Lee, N. Terahertz Communications: Challenges in the Next Decade. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 105–117. [Google Scholar] [CrossRef]
- Shruthi, R.; Shashidhara, H.R.; Deepthi, M.S. Comprehensive Survey on Wireless Network on Chips. In Proceedings of the International Conference on Paradigms of Communication, Computing and Data Sciences; Springer: Berlin/Heidelberg, Germany, 2022; pp. 203–218. [Google Scholar] [CrossRef]
- Benini, L.; De Micheli, G. Networks on chips: A new SoC paradigm. IEEE Comput. 2002, 35, 70–78. [Google Scholar] [CrossRef]
- Deb, S.; Mondal, H.K. Wireless network-on-chip: A new era in multi-core chip design. In Proceedings of the 2014 25nd IEEE International Symposium on Rapid System Prototyping, New Delhi, India, 16–17 October 2014; pp. 59–64. [Google Scholar] [CrossRef]
- Kumar, A.; Peh, L.S.; Kundu, P.; Jha, N.K. Toward Ideal On-Chip Communication Using Express Virtual Channels. IEEE Micro 2008, 28, 80–90. [Google Scholar] [CrossRef]
- Shacham, A.; Bergman, K.; Carloni, L.P. Photonic Networks-on-Chip for Future Generations of Chip Multiprocessors. IEEE Trans. Comput. 2008, 57, 1246–1260. [Google Scholar] [CrossRef]
- Yang, Y.; Yamagami, Y.; Yu, X.; Pitchappa, P.; Webber, J.; Zhang, B.; Fujita, M.; Nagatsuma, T.; Singh, R. Terahertz topological photonics for on-chip communication. Nat. Photonics 2020, 14, 446–451. [Google Scholar] [CrossRef]
- Chang, M.F.; Cong, J.; Kaplan, A.; Naik, M.; Reinman, G.; Socher, E.; Tam, S.W. CMP network-on-chip overlaid with multi-band RF-interconnect. In Proceedings of the 2008 IEEE 14th International Symposium on High Performance Computer Architecture, Salt Lake City, UT, USA, 16–20 February 2008; pp. 191–202. [Google Scholar] [CrossRef]
- Tapie, J.; Imani, M.F.; del Hougne, P. Toward THz RIS-Parametrized Wireless Networks-on-Chip. In Proceedings of the 10th ACM International Conference on Nanoscale Computing and Communication, NANOCOM ’23, New York, NY, USA, 20–22 September 2023; pp. 142–143. [Google Scholar] [CrossRef]
- Trichopoulos, G.C.; Theofanopoulos, P.; Kashyap, B.; Shekhawat, A.; Modi, A.; Osman, T.; Kumar, S.; Sengar, A.; Chang, A.; Alkhateeb, A. Design and Evaluation of Reconfigurable Intelligent Surfaces in Real-World Environment. IEEE Open J. Commun. Soc. 2022, 3, 462–474. [Google Scholar] [CrossRef]
- Araghi, A.; Khalily, M.; Safaei, M.; Bagheri, A.; Singh, V.; Wang, F.; Tafazolli, R. Reconfigurable Intelligent Surface (RIS) in the Sub-6 GHz Band: Design, Implementation, and Real-World Demonstration. IEEE Access 2022, 10, 2646–2655. [Google Scholar] [CrossRef]
- Basharat, S.; Hassan, S.A.; Pervaiz, H.; Mahmood, A.; Ding, Z.; Gidlund, M. Reconfigurable Intelligent Surfaces: Potentials, Applications, and Challenges for 6G Wireless Networks. IEEE Wirel. Commun. 2021, 28, 184–191. [Google Scholar] [CrossRef]
- Khalid, W.; Rehman, M.A.U.; Chien, T.V.; Kaleem, Z.; Lee, H.; Yu, H. Reconfigurable Intelligent Surface for Physical Layer Security in 6G-IoT: Designs, Issues, and Advances. IEEE Internet Things J. 2023; Early Access. [Google Scholar] [CrossRef]
- Singh, A.K.; Maurya, A.K.; Prakash, R.; Thakur, P.; Tiwari, B. Wireless Communication Channel Management for 6G Networks Applying Reconfigurable Intelligent Surface. In Proceedings of the International Conference on Computing, Control and Industrial Engineering; Springer: Berlin/Heidelberg, Germany, 2023; pp. 817–829. [Google Scholar]
- Huang, C.; Yang, Z.; Alexandropoulos, G.C.; Xiong, K.; Wei, L.; Yuen, C.; Zhang, Z. Hybrid Beamforming for RIS-Empowered Multi-hop Terahertz Communications: A DRL-based Method. In Proceedings of the 2020 IEEE Globecom Workshops (GC Wkshps), Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Noh, S.; Lee, J.; Lee, G.; Seo, K.; Sung, Y.; Yu, H. Channel Estimation Techniques for RIS-Assisted Communication: Millimeter-Wave and Sub-THz Systems. IEEE Veh. Technol. Mag. 2022, 17, 64–73. [Google Scholar] [CrossRef]
- Pan, Y.; Pan, C.; Jin, S.; Wang, J. RIS-Aided Near-Field Localization and Channel Estimation for the Terahertz System. IEEE J. Sel. Top. Signal Process. 2023, 19, 878–892. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J.; Zhou, X.; Wang, C.; Bai, Z.; Ye, Z. Review on Channel Estimation for Reconfigurable Intelligent Surface Assisted Wireless Communication System. Mathematics 2023, 11, 3235. [Google Scholar] [CrossRef]
- Le, N.P.; Alouini, M.S. Performance Analysis of RIS-Aided THz Wireless Systems over α-μ Fading: An Approximate Closed-Form Approach. IEEE Internet Things J. 2023; Early Access. [Google Scholar] [CrossRef]
- Lyu, Y.; Kyösti, P.; Fan, W. Sub-terahertz channel sounder: Review and future challenges. China Commun. 2023, 20, 26–48. [Google Scholar] [CrossRef]
- Rao, A.S.; SS, S.M.; Yelasani, S.; Kumar, B.S. Terahertz Communications: Applications, Challenges and Open Research Issues for Next Generation 6G Wireless Networks. Int. J. Innov. Eng. Manag. Res. 2023, 12, 295–315. [Google Scholar]
- Chen, X.; Lindley-Hatcher, H.; Stantchev, R.I.; Wang, J.; Li, K.; Hernandez Serrano, A.; Taylor, Z.D.; Castro-Camus, E.; Pickwell-MacPherson, E. Terahertz (THz) biophotonics technology: Instrumentation, techniques, and biomedical applications. Chem. Phys. Rev. 2022, 3, 11311. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, L.; Han, C. Millidegree-level direction-of-arrival (DoA) estimation and tracking for terahertz wireless communications. In Proceedings of the 2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Como, Italy, 22–25 June 2020; pp. 1–9. [Google Scholar]
- Kammoun, A.; Chaaban, A.; Debbah, M.; Alouini, M.S. Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems. IEEE Trans. Wireless Commun. 2020, 19, 7748–7764. [Google Scholar]
- Zhi, K.; Pan, C.; Ren, H.; Wang, K. Power Scaling Law Analysis and Phase Shift Optimization of RIS-Aided Massive MIMO Systems with Statistical CSI. IEEE Trans. Commun. 2022, 70, 3558–3574. [Google Scholar] [CrossRef]
- Zhou, H.; Erol-Kantarci, M.; Liu, Y.; Poor, H.V. A Survey on Model-based, Heuristic, and Machine Learning Optimization Approaches in RIS-aided Wireless Networks. arXiv 2023, arXiv:2303.14320. [Google Scholar]
- Sol, J.; Smith, D.R.; Del Hougne, P. Meta-programmable analog differentiator. Nature Commun. 2022, 13, 1713. [Google Scholar] [CrossRef]
- Ma, S.; Antonsen, T.; Anlage, S.; Ott, E. Short-wavelength reverberant wave systems for enhanced reservoir computing. Phys. Rev. Res. 2022, 4, 023167. [Google Scholar] [CrossRef]
- del Hougne, P.; Lerosey, G. Leveraging chaos for wave-based analog computation: Demonstration with indoor wireless communication signals. Phys. Rev. X 2018, 8, 041037. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, X.; Zhang, Y.J.A. Reconfigurable intelligent surface enabled federated learning: A unified communication-learning design approach. IEEE Trans. Wireless Commun. 2021, 20, 7595–7609. [Google Scholar] [CrossRef]
- Ni, W.; Liu, Y.; Yang, Z.; Tian, H.; Shen, X. Federated learning in multi-RIS-aided systems. IEEE Internet Things J. 2021, 9, 9608–9624. [Google Scholar] [CrossRef]
- Chiang, P.; Woracheewan, S.; Hu, C.; Guo, L.; Khanna, R.; Nejedlo, J.; Liu, H. Short-range, wireless interconnect within a computing chassis: Design challenges. IEEE Des. Test. Comput. 2010, 27, 32–43. [Google Scholar] [CrossRef]
- Fu, J.; Juyal, P.; Zajić, A. Modeling of 300 GHz chip-to-chip wireless channels in metal enclosures. IEEE Trans. Wireless Commun. 2020, 19, 3214–3227. [Google Scholar] [CrossRef]
Reference | Summary and Focus | Approach Taken on the Subject: References, Details and Future Directions | |
---|---|---|---|
Channel Discussion | IS Discussion | ||
[1] | Comparison between 5G and 6G, use cases for 6G enabling techniques, and beyond 6G technologies. | Deep | Intermediary |
[2] | A survey of 6G wireless channel with future research challenges and IRS models. | Deep | Low |
[3] | Application scenarios for THz RIS, enabling technologies and open issues. | Intermediary | Deep |
[4] | THz technical challenges and performance issue solutions. | Intermediary | None |
[14] | Overview of RIS technology and the key challenges in implementing a RIS-aided hybrid network. | Specific | Specific |
[28] | A survey of RIS-empowered wireless networks. | Deep | Deep |
[29] | Performance evaluation of RIS assisted D-band wireless communication. | Specific | Specific |
[30] | TE-GD scheme is developed during the iterative process by a dynamic update of the step size in IRS assisted THz MIMO system. | Specific | Specific |
[31] | Analytical path loss model for THz RIS. | Specific | Specific |
[32] | THz IRS in MIMO systems operating in the near-field for beamfocusing and power gain MIMO. | Specific | Specific |
[33] | Channel estimation and transmission solutions for mMIMO-assisted THz system. | Specific | Specific |
[34] | Channel acquisition for the IRS enabled THz mMIMO system. | Specific | Specific |
[35] | CSI and optimal data rate for IRS THz MIMO Systems. | Specific | Specific |
[36] | IRS with beamforming optimization based on statistical CSI knowledge. | Specific | Specific |
[37] | Development of a downlink beam training/alignment method for IRS-assisted mmWave/THz systems. | Specific | Specific |
[38] | Secure transmission for an IRS-assisted mmWave and THz system. | Specific | Specific |
[39] | Secure THz communication with IRS. | Specific | Specific |
[40] | Security challenges affecting RIS-empowered 6G wireless networks. | Negligible | Negligible |
[41] | Far-field path loss using physical optics techniques, considering an IRS in propagation. | Specific | Specific |
[42] | Beamforming and information transfer technique based on spatial modulation of the LIS elements index. | Specific | Specific |
[43] | THz RISs for 6G communication links. | Intermediary | Deep |
[44] | RIS for wireless communications: an overview of hardware designs, channel models, and estimation techniques. | Deep | Deep |
[45] | RIS for smart wireless environments: channel estimation, system design, and applications in 6G networks. | Deep | Deep |
[46] | A survey of 6G wireless communications: emerging technologies. | Negligible | Negligible |
[47] | Overview of THz-specific signal processing techniques for wireless communications, emphasizing ultra-mMIMO systems and RIS. | Intermediary | Deep |
[48] | A tutorial on THz band localization for 6G communication systems. | Deep | Deep |
[49] | Seven defining features of THz wireless systems: a fellowship of communication and sensing. | Deep | Intermediary |
[50] | RIS-aided THz communications. | Specific | Specific |
[51] | Near-field study of holographic IRS operating at THz frequency band. | Specific | Specific |
[52] | Holographic RIS for application to mMIMO systems at THz band. | Specific | Specific |
[53] | RIS-assisted THz systems. | Specific | Specific |
[54] | THz communications employing supporting UAVs and IRS. | Specific | Specific |
This work | A comprehensive survey on IS-aided THz wireless communication focusing on channel modeling. | Deep | Deep |
Reference | Performance Evaluation | System Model | Design Objective | Optimization Techniques |
---|---|---|---|---|
[29] | Path gain and capacity | D–band indoor downlink | Maximize signal reflection and restore LoS link between the transmitter and receiver blocked by obstacles | Antenna theory |
[30] | Adaptively selecting step size | Indoor MIMO downlink | Spectral efficiency with phase shift adjust | Taylor expansion aided gradient descent |
[31] | Path loss | THz systems downlink | Expression that determines the optimal phase shift | Electromagnetic theory |
[32] | Path loss | MIMO | Power gain and energy efficiency | Beamforming |
[33] | Beam pattern and quantization error | mMIMO | Channel estimation and transmission solutions with hybrid beamforming architectures | Geometric channel model and IAP-SP for CSI acquisition. |
[34] | NMSE | Indoor MIMO systems | Channel estimation | Beam training |
[35] | NMSE | MIMO | Channel estimation | IAP-SP scheme |
[36] | SNR feedback | MISO downlink | Minimization transmit power while maximizing the system achievable rate | Beamforming optimization based on statistical CSI and genetic algorithms |
[37] | Success rate and beamforming gain ratio | mmWave/THz downlink | Perfectly aligned transmitter-receiver channel | Efficient beam training with cascade channel |
[38] | Secrecy rate | mmWave/THz systems | Optimal discrete phase shifts to maximize the secrecy rate | SDP-based method and the element-wise BCD method |
[39] | Secrecy rate | MISO downlink | Secure operation with secrecy rate maximization | Active beamformer and passive reflecting phase shifters |
[41] | Path loss | Not detailed | Intensity for the electric field reflected by RISs in the short and long transmission distance regimes | General scalar theory of diffraction and the Huygens-Fresnel principle |
[42] | SNR | Not detailed | Improve the average receive SNR | Beamforming |
[50] | SNR, SNDR, small-scale amplitude fading, OP, and ergodic capacity | THz system | Exact PDF and CDF expressions of end-to-end SNR and SNDR of the system | FTR distribution and multivariate Fox’s H-function |
[51] | Path loss and beam pattern | THz systems | Beamfocusing | Beamforming with physical optics channel model |
[52] | Beam pattern | THz massive MIMO systems (downlink and uplink) | Beamforming design and channel estimation performance | Beamforming with physical channel model |
[53] | SNR, ergodic capacity and OP | THz indoor systems downlink | Receiver beam misalignment and restore the transmitter/receiver connection blocked by obstacles | Electromagnetic theory |
[54] | UAV trajectory, phase shift, THz band allocation and power control | UAV systems downlink | To maintain reliable THz communication and minimize average rate of users | SCA |
[129] | Energy-efficient, SNR, latency and success rate | 3-D indoor THz wireless communication | Minimizes latency using ray tracing techniques to find the best THz signal propagation path | Ray searching and beam-selecting |
[130] | Achievable rate, phase compensation and normalized array gain | IS-aided THz system | Achievable rate maximization for distributed IS-assisted THz communications | Analog beamforming, digital beamforming vector |
[131] | Phase shifts, ergodic net throughput, blocking probability | CF mMIMO | Channel estimation and unblock links | OP and fading spatial correlation with increased element numbers |
[128] | Misalignment fading | THz inter-satellite links | Compensation for the high path loss associated with high carrier frequencies and to improve SNR | Antenna theory |
[132] | Coverage area and sum rate | mmWave or THz indoor communication | Placement optimization to maximize the long-term sum rate and then optimization of transmit beamforming and reflecting procedure in real time | Antenna theory and deep learning |
[133] | BER and modulation speed | Full-wave simulation | Eliminate on-chip signal attenuation and inter-symbol interference | Binary IS optimization algorithm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
E Silva, J.D.S.; Ribeiro, J.A.P.; Adanvo, V.F.; Mafra, S.B.; Mendes, L.L.; Li, Y.; de Souza, R.A.A. A Survey on the Impact of Intelligent Surfaces in the Terahertz Communication Channel Models. Sensors 2024, 24, 33. https://doi.org/10.3390/s24010033
E Silva JDS, Ribeiro JAP, Adanvo VF, Mafra SB, Mendes LL, Li Y, de Souza RAA. A Survey on the Impact of Intelligent Surfaces in the Terahertz Communication Channel Models. Sensors. 2024; 24(1):33. https://doi.org/10.3390/s24010033
Chicago/Turabian StyleE Silva, Jefferson D. S., Jéssica A. P. Ribeiro, Vignon F. Adanvo, Samuel B. Mafra, Luciano L. Mendes, Yonghui Li, and Rausley A. A. de Souza. 2024. "A Survey on the Impact of Intelligent Surfaces in the Terahertz Communication Channel Models" Sensors 24, no. 1: 33. https://doi.org/10.3390/s24010033
APA StyleE Silva, J. D. S., Ribeiro, J. A. P., Adanvo, V. F., Mafra, S. B., Mendes, L. L., Li, Y., & de Souza, R. A. A. (2024). A Survey on the Impact of Intelligent Surfaces in the Terahertz Communication Channel Models. Sensors, 24(1), 33. https://doi.org/10.3390/s24010033