Radon Exposure Assessment in Occupational and Environmental Settings: An Overview of Instruments and Methods
Abstract
:1. Introduction
2. Assessment Methods for Occupational and Environmental Radon Exposure
2.1. Occupation Radon Methods
Radon in Mining Settings
2.2. Environmental Radon Methods
Retrospective Radon Dosimetry
- Glass implantation method for retrospective radon dosimetry
- CD/DVD method for retrospective radon dosimetry
- Comparative analysis of the glass implantation method and the CD/DVD method
3. Comparative Analysis of Radon Detection Techniques
4. Assessment Tools for Radon Exposure
5. Accuracy and Reliability of Radon Assessment Tools
6. Empirical Evaluation of Radon Detection Methods
- Long-term monitoring results:
- 2.
- Short-term monitoring results:
- 3.
- Continuous real-time monitoring results:
- 4.
- Grab sampling results:
- 5.
- Comparative analysis of detection techniques:
7. Limitations of Radon Detection Methods
8. Challenges in Assessing Radon in General Environments
9. Best Practices in Radon Exposure Monitoring and Assessment
10. Recommendations for Improving Radon Exposure Monitoring
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kreuzer, M.; McLaughlin, J. Radon. In WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Haanes, H.; Finne, I.; Skjerdal, H.; Rudjord, A.L. Indoor and Outdoor Exposure to Radon, Thoron and Thoron Decay Products in a NORM Area with Highly Elevated Bedrock Thorium and Legacy Mines. Radiat. Res. 2019, 192, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Tukkaraja, P.; Bhargava, R.; Sridharan, S.J. Radon in Underground Mines. Min. Technol. Work. Title 2021. [Google Scholar] [CrossRef]
- Jasaitis, D.; Pečiulienė, M. Natural Radioactivity and Radon Exhalation from Building Materials in Underground Parking Lots. Appl. Sci. 2021, 11, 7475. [Google Scholar] [CrossRef]
- Baskaran, M. Radon Measurement Techniques. In Radon: A Tracer for Geological, Geophysical and Geochemical Studies; Baskaran, M., Ed.; Springer Geochemistry; Springer International Publishing: Cham, Switzerland, 2016; pp. 15–35. ISBN 978-3-319-21329-3. [Google Scholar]
- Lorenzo-González, M.; Torres-Durán, M.; Barbosa-Lorenzo, R.; Provencio-Pulla, M.; Barros-Dios, J.M.; Ruano-Ravina, A. Radon Exposure: A Major Cause of Lung Cancer. Expert Rev. Respir. Med. 2019, 13, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Degu Belete, G.; Alemu Anteneh, Y. General Overview of Radon Studies in Health Hazard Perspectives. J. Oncol. 2021, 2021, e6659795. [Google Scholar] [CrossRef] [PubMed]
- Elsesmita; Ermayanti, S.; Fitrina, D.W. Effect of Radon and Lung Cancer Risk: A Narrative Literature Review. Biosci. Med. J. Biomed. Transl. Res. 2022, 6, 2691–2698. [Google Scholar] [CrossRef]
- Gross, E.L. Evaluation of Radon Occurrence in Groundwater from 16 Geologic Units in Pennsylvania, 1986–2015, with Application to Potential Radon Exposure from Groundwater and Indoor Air; U.S. Geological Survey: Reston, VA, USA, 2017. [Google Scholar]
- World Health Organization. WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009; ISBN 978-92-4-154767-3. [Google Scholar]
- Grzywa-Celińska, A.; Krusiński, A.; Mazur, J.; Szewczyk, K.; Kozak, K. Radon—The Element of Risk. The Impact of Radon Exposure on Human Health. Toxics 2020, 8, 120. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.S.; Dinis, M.d.L. Assessment of Indoor Radon Concentration and Time-Series Analysis of Gamma Dose Rate in Three Thermal Spas from Portugal. Environ. Monit. Assess. 2022, 194, 611. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Coull, B.A.; Koutrakis, P. A National Comparison Between the Collocated Short- and Long-Term Radon Measurements in the United States. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 455. [Google Scholar] [CrossRef]
- Chu, M.C.; Kwan, K.K.; Kwok, M.W.; Kwok, T.; Leung, J.K.C.; Leung, K.Y.; Lin, Y.C.; Luk, K.B.; Pun, C.S.J. The Radon Monitoring System in Daya Bay Reactor Neutrino Experiment. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2016, 808, 156–164. [Google Scholar] [CrossRef]
- Mancini, S.; Vilnitis, M.; Guida, M. A Novel Strategy for the Assessment of Radon Risk Based on Indicators. Int. J. Environ. Res. Public Health 2021, 18, 8089. [Google Scholar] [CrossRef]
- Vienneau, D.; Boz, S.; Forlin, L.; Flückiger, B.; de Hoogh, K.; Berlin, C.; Bochud, M.; Bulliard, J.L.; Zwahlen, M.; Röösli, M. Residential Radon—Comparative Analysis of Exposure Models in Switzerland. Environ. Pollut. 2021, 271, 116356. [Google Scholar] [CrossRef] [PubMed]
- Marsh, J.W.; Laurier, D.; Tirmarche, M. Radon dosimetry for workers: Icrp’s approach. Radiat. Prot. Dosimetry 2017, 177, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Galli, G.; Cannelli, V.; Nardi, A.; Piersanti, A. Implementing Soil Radon Detectors for Long Term Continuous Monitoring. Appl. Radiat. Isot. 2019, 153, 108813. [Google Scholar] [CrossRef] [PubMed]
- Minda, M.; Tóth, G.; Horváth, I.; Barnet, I.; Hámori, K.; Tóth, E. Indoor Radon Mapping and Its Relation to Geology in Hungary. Environ. Geol. 2009, 57, 601–609. [Google Scholar] [CrossRef]
- Ajrouche, R.; Ielsch, G.; Cléro, E.; Roudier, C.; Gay, D.; Guillevic, J.; Laurier, D.; Le Tertre, A. Quantitative Health Risk Assessment of Indoor Radon: A Systematic Review. Radiat. Prot. Dosimetry 2017, 177, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Mudd, G.M. Radon Sources and Impacts: A Review of Mining and Non-Mining Issues. Rev. Environ. Sci. Biotechnol. 2008, 7, 325–353. [Google Scholar] [CrossRef]
- Kreuzer, M.; Fenske, N.; Schnelzer, M.; Walsh, L. Lung Cancer Risk at Low Radon Exposure Rates in German Uranium Miners. Br. J. Cancer 2015, 113, 1367–1369. [Google Scholar] [CrossRef] [PubMed]
- Daniels, R.; Schubauer-Berigan, M. Radon in us workplaces: A review. Radiat. Prot. Dosimetry 2017, 176, 278–286. [Google Scholar] [CrossRef]
- Fan, D.; Zhuo, W.; Zhang, Y. Occupational exposure to radon in different kinds of non-uranium mines. Radiat. Prot. Dosimetry 2016, 170, 311–314. [Google Scholar] [CrossRef]
- Papp, Z.; Dezso, Z. Measuring Radon Progeny and Thoron Progeny in Air by Absolute Beta Counting Subsequent to Grab Sampling. Radiat. Meas. 2006, 41, 617–626. [Google Scholar] [CrossRef]
- Georgy, C.; Rafael, Z.; Ivan, B. Radon Monitoring in Groundwater and Soil Gas of Sakhalin Island. J. Geosci. Environ. Prot. 2015, 3, 48–53. [Google Scholar] [CrossRef]
- Giaritzoglou, I.; Aslanoglou, X.; Stamoulis, K.; Alexandropoulou, S.; Ioannides, K. Radon Retrospective Dosimetry in Different Environments. HNPS Adv. Nucl. Phys. 2020, 27, 77–80. [Google Scholar] [CrossRef]
- Improved Adjustment for Covariate Measurement Error in Radon Studies: Alternatives to Regression Calibration—ProQuest. Available online: https://www.proquest.com/openview/6553e074dadb236606d9689a5184cf91/1?pq-origsite=gscholar&cbl=18750 (accessed on 16 April 2024).
- Ramola, R.C.; Gusain, G.S.; Prasad, G. Retrospective Assessment of Indoor Radon Exposure by Measurements of Embedded 210Po Activity in Glass Objects. Atmos. Environ. 2008, 42, 9123–9127. [Google Scholar] [CrossRef]
- Sun, K.; Steck, D.J.; Field, R.W. Field investigation of surface-deposited radon progeny as a possible predictor of the airborne radon progeny dose rate. Health Phys. 2009, 97, 132. [Google Scholar] [CrossRef]
- Samuelsson, C. Retrospective Determination of Radon in Houses. Nature 1988, 334, 338–340. [Google Scholar] [CrossRef]
- Pressyanov, D.; Mitev, K.; Georgiev, S.; Dimitrova, I. Radon Mapping by Retrospective Measurements—An Approach Based on CDs/DVDs. J. Environ. Radioact. 2010, 101, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Pressyanov, D.S. Retrospective Measurements of Thoron and Radon by CDs/DVDs: A Model Approach. Radiat. Prot. Dosimetry 2012, 149, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Pressyanov, D.; Buysse, J.; Van Deynse, A.; Poffijn, A.; Meesen, G. Indoor Radon Detected by Compact Discs. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2001, 457, 665–666. [Google Scholar] [CrossRef]
- Dimitrov, D.; Pressyanov, D. The CD/DVD method as a tool for the health physics service and ventilation diagnostics in underground mines. Radiat. Prot. Dosimetry 2018, 181, 30–33. [Google Scholar] [CrossRef]
- Fleischer, R.L. Serendipitous Radiation Monitors: Past Radiation Doses Can Be Measured by Studying the Tracks That Speeding Particles Have Left in Ordinary Solids—Detectors That Just Happened to Be There. Am. Sci. 2002, 90, 324–331. [Google Scholar] [CrossRef]
- Abojassim, A.A. Comparative Study between Active and Passive Techniques for Measuring Radon Concentrations in Groundwater of Al-Najaf City, Iraq. Groundw. Sustain. Dev. 2020, 11, 100476. [Google Scholar] [CrossRef]
- Moore, M.E.; Keillor, M.E.; Kasparek, D.M.; Day, A.R.; Glasgow, B.D. Electrostatic Precipitator Collection Efficiency Studies Using Atmospheric Radon Progeny as Aerosol Analogs for Nuclear Explosion Radionuclides. J. Environ. Radioact. 2023, 270, 107306. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Radon Publications, Webinars, and Videos. Available online: https://www.epa.gov/radon/radon-publications-webinars-and-videos (accessed on 15 March 2024).
- Reevaluation of the United States Radon Reduction Strategy: Rationale for a Tiered Approach to Risk Mitigation—ProQuest. Available online: https://www.proquest.com/openview/aa4d4df0e993768c4bbd619e7988d579/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 16 April 2024).
- International Atomic Energy Agency. Design and Conduct of Indoor Radon Surveys; International Atomic Energy Agency: Vienna, Austria, 2019; pp. 1–110. [Google Scholar]
- Sumesh, C.; Kumar, A.; Tripathi, R.; Puranik, V. Comparison Study and Thoron Interference Test of Different Radon Monitors. Radiat. Prot. Dosimetry 2013, 153, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Iimoto, T.; Tokonami, S.; Morishita, Y.; Kosako, T. Application of Activated Charcoal Radon Collectors in High Humidity Environments. J. Environ. Radioact. 2005, 78, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Vargas, A.; Ortega, X. Influence of Environmental Changes on Integrating Radon Detectors: Results of an Intercomparison Exercise. Radiat. Prot. Dosimetry 2007, 123, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Leontaris, F.; Boziari, A.; Clouvas, A.; Kolovou, M.; Guilhot, J. Procedures to measure mean ambient dose equivalent rates using electret ion chambers. Radiat. Prot. Dosimetry 2020, 190, 6–21. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.S.; Malheiros, B.; Pires, K.; Assunção, M.; Guedes, S.; Correa, J.; Paschuk, S. Low Energy Alpha Particle Tracks in CR-39 Nuclear Track Detectors: Chemical Etching Studies. Nucl. Instrum. Methods Phys. Res. Sect.-Accel. Spectrometers Detect. Assoc. Equip. 2021, 995, 165130. [Google Scholar] [CrossRef]
- Radulescu, I.; Calin, M.R.; Luca, A.; Röttger, A.; Grossi, C.; Done, L.; Ioan, M.R. Inter-Comparison of Commercial Continuous Radon Monitors Responses. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2022, 1021, 165927. [Google Scholar] [CrossRef]
- Yarmoshenko, I.; Vasilyev, A.; Malinovsky, G.; Bossew, P.; Žunić, Z.S.; Onischenko, A.; Zhukovsky, M. Variance of Indoor Radon Concentration: Major Influencing Factors. Sci. Total Environ. 2016, 541, 155–160. [Google Scholar] [CrossRef]
- George, A.C. An Overview of Instrumentation for Measuring Environmental Radon and Radon Progeny. IEEE Trans. Nucl. Sci. 1990, 37, 892–901. [Google Scholar] [CrossRef]
- Angell, W.J. The US Radon Problem, Policy, Program and Industry: Achievements, Challenges and Strategies. Radiat. Prot. Dosimetry 2008, 130, 8–13. [Google Scholar] [CrossRef]
- Novilla, M.L.B.; Johnston, J.D.; Beard, J.D.; Pettit, L.L.; Davis, S.F.; Johnson, C.E. Radon Awareness and Policy Perspectives on Testing and Mitigation. Atmosphere 2021, 12, 1016. [Google Scholar] [CrossRef]
- Pantelić, G.; Čeliković, I.; Živanović, M.; Vukanac, I.; Nikolić, J.K.; Cinelli, G.; Gruber, V. Qualitative Overview of Indoor Radon Surveys in Europe. J. Environ. Radioact. 2019, 204, 163–174. [Google Scholar] [CrossRef]
- Tsapalov, A.; Kovler, K. Short- versus Long-Term Tests of Indoor Radon for Risk Assessment by Monte-Carlo Method towards Effective Measurement Strategy. Indoor Air 2022, 32, e13166. [Google Scholar] [CrossRef]
- USEPA. A Citizen’s Guide to Radon the Guide to Protecting Yourself and Your Family from Radon Indoor Air Quality (IAQ); USEPA: Washington, DC, USA, 2016. [Google Scholar]
- Kitto, M.E.; Murphy, C.; Dixon, S.L.; Jacobs, D.E.; Wilson, J.; Malone, J. Evaluating and Assessing Radon Testing in Multifamily Housing. J. Public Health Manag. Pract. 2022, 28, E525. [Google Scholar] [CrossRef]
- Röttger, A.; Röttger, S.; Grossi, C.; Vargas, A.; Curcoll, R.; Otáhal, P.; Hernández-Ceballos, M.Á.; Cinelli, G.; Chambers, S.; Barbosa, S.A.; et al. New Metrology for Radon at the Environmental Level. Meas. Sci. Technol. 2021, 32, 124008. [Google Scholar] [CrossRef]
- Almayahi, B.A.; Ali, A.H. Fabrication of Biosensor for the Assessment of Radon and Lead Levels in the Blood. Heliyon 2023, 9, e19591. [Google Scholar] [CrossRef]
- Li, M.-X.; Li, Q.-Y.; Li, R.-M.-J.; Lin, S.-T.; Liu, S.-K.; Tang, C.-J.; Xing, H.-Y.; Zhu, J.-J.; Yue, Q. Low Radon Concentration Measurement with a Radon-Dissolved Liquid Scintillator Pilot Detector. arXiv 2023, arXiv:2308.07160. [Google Scholar]
- Alkufi, A.A.; Abojassim, A.A.; Oleiwi, M.H. Use of Air Things Radon Detector in Liquid Samples (Serum and Urine). Appl. Radiat. Isot. 2024, 207, 111265. [Google Scholar] [CrossRef]
- Radon Awareness Week 2024|CDC. Available online: https://www.cdc.gov/radon/awareness.html (accessed on 15 March 2024).
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, Effects and Risks of Ionizing Radiation, UNSCEAR 2020 Report: Report to the General Assembly, with Scientific Annexes A and B; UN: San Francisco, CA, USA, 2022. [Google Scholar]
Criteria | Glass Implantation Method | CD/DVD Method |
---|---|---|
Accuracy | Accuracy varies; generally, within a factor of 2–3 at best by an order of magnitude. | Comparatively better accuracy is observed, with less variability in results. |
Ease of Implementation | Requires access to specific types of glass and specialized microscopic equipment; can be challenging to implement widely. | Easier implementation due to widespread availability and affordability of CDs/DVDs and simpler analysis process. |
Potential Limitations | Requires historical glass that has been undisturbed. | Quality and age of CD/DVD may vary, and environmental conditions may affect track preservation. Outdated in technology. |
Preferable Conditions | Ideal for detailed studies in historical buildings or long-occupied residential homes where glass has not been disturbed. | Suitable for broad and cost-effective screening in residential and office environments. This method is good for preliminary assessments. |
Contributions to the Field | Provides highly reliable data for detailed exposure assessment and scientific studies. | Facilitates widespread, basic radon exposure assessments. |
Reference(s) | [29,31,36] | [34,35] |
Technique | Advantages | Disadvantages | Cost | Sensitivity | Measurement Duration | Ideal for | |
---|---|---|---|---|---|---|---|
Alpha spectrometry of radon progeny (CARMs) | Real-time data; high sensitivity | Expensive; complex setup; power required | High | Highest | Days to weeks | Short-term studies; source identification | |
ESP detectors—concentrate radon for alpha spectrometry | Highest sensitivity | Expensive; complex; power required | Highest | Highest | Days to weeks | Research; specialized applications | |
Charcoal canisters—adsorb radon for laboratory analysis | Simple; inexpensive | Requires lab analysis; delayed results | Low | Moderate | Days to weeks | Short-term sampling | |
ATDs—record alpha particle tracks | Long-term integration; easy deployment | Requires specialized analysis; delayed results | Moderate | Moderate | Months to years | Long-term monitoring; screening | |
EICs | Measure ion mobility changes due to radon | Easy to use; low cost | Lower sensitivity than others | Low | Moderate | Months to years | Long-term monitoring; screening |
Technique | Accuracy | Reliability | References |
---|---|---|---|
Continuous Alpha Radon Monitors (Carms) | - High sensitivity (0.2 and 4 Bq/m3). | - Requires complex setup and power source. | [42] |
Electrostatic Precipitation (Esp) Detectors | - Highest sensitivity (exceeds CARMs). | - Limited field applications due to complexity and cost. | [5] |
Charcoal Canisters | - Moderate sensitivity (3–10 pCi/L). | - Standardized method with good reliability. | [39] |
Alpha Track Detectors (Atds) | - Moderate sensitivity; varies with brand and type. | - Generally reliable for long-term monitoring. | [40] |
Electret Ionization Chambers (Eics) | - Moderate sensitivity; varies with model and calibration. | - Reliability can be affected by environmental factors. | [10] |
Detection Method | Limitation | Impact | References |
---|---|---|---|
Charcoal Canisters | Sensitivity to humidity | Humidity can saturate the charcoal, reducing adsorption and leading to underestimation. | [42,43] |
Charcoal Canisters | Temperature-dependence | Temperature changes affect the diffusion rate of radon and its adsorption by charcoal, potentially affecting the results. | [43,44] |
Electret Ion Chambers | Requires calibration | Sensitivity to static charges, thus requiring frequent recalibration. | [45] |
Alpha Track Detectors | Long integration time | Though they have the ability to detect cumulative exposure, alpha track detectors offer no insight into short-term fluctuations or sudden radon increases. | [46] |
Continuous Radon Monitors | High cost | Excessive costs limit accessibility for widespread residential use and routine testing. | [47] |
Continuous Radon Monitors | Power dependency | Reliant on continuous power supplies, which can be limited in areas with power issues. | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kholopo, M.; Rathebe, P.C. Radon Exposure Assessment in Occupational and Environmental Settings: An Overview of Instruments and Methods. Sensors 2024, 24, 2966. https://doi.org/10.3390/s24102966
Kholopo M, Rathebe PC. Radon Exposure Assessment in Occupational and Environmental Settings: An Overview of Instruments and Methods. Sensors. 2024; 24(10):2966. https://doi.org/10.3390/s24102966
Chicago/Turabian StyleKholopo, Mota, and Phoka Caiphus Rathebe. 2024. "Radon Exposure Assessment in Occupational and Environmental Settings: An Overview of Instruments and Methods" Sensors 24, no. 10: 2966. https://doi.org/10.3390/s24102966
APA StyleKholopo, M., & Rathebe, P. C. (2024). Radon Exposure Assessment in Occupational and Environmental Settings: An Overview of Instruments and Methods. Sensors, 24(10), 2966. https://doi.org/10.3390/s24102966