Seismic Monitoring of a Deep Geothermal Field in Munich (Germany) Using Borehole Distributed Acoustic Sensing
Abstract
:1. Introduction
2. Study Site and Monitoring Infrastructure
2.1. Geothermal Field and Setup for Fiber Optic Sensing
2.2. Infrastructure for Data Saving and Processing
- It should guarantee reliable and secure connectivity for data transmission and protection.
- It should have sufficient storage capacity and efficient data management systems to handle the large volume of data generated.
- It should feature computational capabilities for data processing and analyses, providing quasi-real-time processing capabilities.
- Additionally, the infrastructure should be scalable to accommodate forthcoming technological advancements, methodological innovations, and the evolving requirements set forth by the operator.
3. Seismic Processing Workflow
3.1. Event Detection and Automated P- and S-Wave Arrival-Time Picking
3.2. Seismic Source Characterization
3.2.1. Event Location
3.2.2. DAS Strain-Rate Data Conversion
3.2.3. Source Parameters Evaluation
4. Results
4.1. Picking of Arrival-Times
4.2. Event Location
4.3. Strain-Rate to Acceleration
4.4. Seismic Source Parameters
5. Discussion
5.1. Event Location
5.2. Assessment of DAS-Based Acceleration
5.3. Implications for Seismic Monitoring Systems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Event | Type of Processing | Phase GOF | Envelope GOF |
---|---|---|---|
9 February | From semblance matrix | 56 | 55 |
Constant slowness | 52 | 51 | |
22 April | From semblance matrix | 70 | 53 |
Constant slowness | 65 | 45 |
References
- Kraft, T.; Wassermann, J.; Deichmann, N.; Stange, S. The 2008 Earthquakes in the Bavarian Molasse Basin—Possible Relation to Deep Geothermics? EGU General Assembly: Vienna, Austria, 2019; Volume 11, p. 1. [Google Scholar]
- Megies, T.; Wassermann, J. Microseismicity Observed at a Non-Pressure-Stimulated Geothermal Power Plant. Geothermics 2014, 52, 36–49. [Google Scholar] [CrossRef]
- Seithel, R.; Gaucher, E.; Mueller, B.; Steiner, U.; Kohl, T. Probability of Fault Reactivation in the Bavarian Molasse Basin. Geothermics 2019, 82, 81–90. [Google Scholar] [CrossRef]
- Agemar, T.; Weber, J.; Schulz, R. Deep Geothermal Energy Production in Germany. Energies 2014, 7, 4397–4416. [Google Scholar] [CrossRef]
- Dussel, M.; Lüschen, E.; Thomas, R.; Agemar, T.; Fritzer, T.; Sieblitz, S.; Huber, B.; Birner, J.; Schulz, R. Forecast for Thermal Water Use from Upper Jurassic Carbonates in the Munich Region (South German Molasse Basin). Geothermics 2016, 60, 13–30. [Google Scholar] [CrossRef]
- Cröniger, C.; Tretter, R.; Eichenseer, P.; Kleinertz, B.; Timpe, C.; Bürger, V.; Cludius, J. Approach to Climate Neutral Heat Supply in Munich 2035. In Proceedings of the European Geothermal Congress 2022, Berlin, Germany, 17–21 October 2022. [Google Scholar]
- Gaucher, E.; Hansinger, M.; Goblirsch, P.; Azzola, J.; Thiemann, K. Towards a Geothermal Reservoir Management System. In Proceedings of the European Geothermal Congress 2022, Berlin, Germany, 17–21 October 2022. [Google Scholar]
- Koelman, J.M.; Lopez, J.L.; Potters, J.H. Optical Fibers: The Neurons For Future Intelligent Wells. In Proceedings of the All Days, Utrecht, The Netherlands, 27–29 March 2012; SPE: Utrecht, The Netherlands, 2012; p. SPE-150203-MS. [Google Scholar]
- Koelman, J.V. Fiber-Optic Sensing Technology Providing Well, Reservoir Information—Anyplace, Anytime. J. Pet. Technol. 2011, 63, 22–24. [Google Scholar] [CrossRef]
- Van Der Horst, J.; Lopez, J.L.; Berlang, W.; Potters, H. In-Well Distributed Fiber Optic Solutions for Reservoir Surveillance. In Proceedings of the All Days, Houston, TX, USA, 6–9 May 2013; OTC: Houston, TX, USA, 2013; p. OTC-23949-MS. [Google Scholar]
- Lindsey, N.J.; Rademacher, H.; Ajo-Franklin, J.B. On the Broadband Instrument Response of Fiber-Optic DAS Arrays. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018145. [Google Scholar] [CrossRef]
- Hartog, A.; Kotov, O.I.; Liokumovich, L.B. The Optics of Distributed Vibration Sensing; European Association of Geoscientists & Engineers: Stavanger, Norway, 2013. [Google Scholar]
- Masoudi, A.; Newson, T.P. Contributed Review: Distributed Optical Fibre Dynamic Strain Sensing. Rev. Sci. Instrum. 2016, 87, 011501. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Karrenbach, M.; Ajo-Franklin, J.B. A Literature Review. In Distributed Acoustic Sensing in Geophysics; American Geophysical Union (AGU): Washington, DC, USA, 2021; pp. 229–291. ISBN 978-1-119-52180-8. [Google Scholar]
- Lellouch, A.; Biondi, B.L. Seismic Applications of Downhole DAS. Sensors 2021, 21, 2897. [Google Scholar] [CrossRef] [PubMed]
- Reinsch, T.; Thurley, T.; Jousset, P. On the Mechanical Coupling of a Fiber Optic Cable Used for Distributed Acoustic/Vibration Sensing Applications—A Theoretical Consideration. Meas. Sci. Technol. 2017, 28, 127003. [Google Scholar] [CrossRef]
- Azzola, J.; Thiemann, K.; Gaucher, E. Integration of distributed acoustic sensing for real-time seismic monitoring of a geothermal field. Geotherm. Energy 2023, 11, 30. [Google Scholar] [CrossRef]
- Pankow, K.; Mesimeri, M.; Mclennan, J.; Wannamaker, P.; Moore, J. Seismic Monitoring at the Utah Frontier Observatory for Research in Geothermal Energy. In Proceedings of the 45th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 10–12 February 2020. [Google Scholar]
- Isken, M.P.; Vasyura-Bathke, H.; Dahm, T.; Heimann, S. De-Noising Distributed Acoustic Sensing Data Using an Adaptive Frequency–Wavenumber Filter. Geophys. J. Int. 2022, 231, 944–949. [Google Scholar] [CrossRef]
- Lellouch, A.; Yuan, S.; Ellsworth, W.L.; Biondi, B. Velocity-Based Earthquake Detection Using Downhole Distributed Acoustic Sensing—Examples from the San Andreas Fault Observatory at Depth. Bull. Seismol. Soc. Am. 2019, 109, 2491–2500. [Google Scholar] [CrossRef]
- Li, Z.; Zhan, Z. Pushing the Limit of Earthquake Detection with Distributed Acoustic Sensing and Template Matching: A Case Study at the Brady Geothermal Field. Geophys. J. Int. 2018, 215, 1583–1593. [Google Scholar] [CrossRef]
- Schölderle, F.; Lipus, M.; Pfrang, D.; Reinsch, T.; Haberer, S.; Einsiedl, F.; Zosseder, K. Monitoring Cold Water Injections for Reservoir Characterization Using a Permanent Fiber Optic Installation in a Geothermal Production Well in the Southern German Molasse Basin. Geotherm Energy 2021, 9, 21. [Google Scholar] [CrossRef]
- Brune, J.N. Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes. J. Geophys. Res. 1970, 75, 4997–5009. [Google Scholar] [CrossRef]
- Madariaga, R. Dynamics of an Expanding Circular Fault. Bull. Seismol. Soc. Am. 1976, 66, 639–666. [Google Scholar] [CrossRef]
- Paitz, P.; Edme, P.; Gräff, D.; Walter, F.; Doetsch, J.; Chalari, A.; Schmelzbach, C.; Fichtner, A. Empirical Investigations of the Instrument Response for Distributed Acoustic Sensing (DAS) across 17 Octaves. Bull. Seismol. Soc. Am. 2021, 111, 1–10. [Google Scholar] [CrossRef]
- Agemar, T.; Schellschmidt, R.; Schulz, R. Subsurface Temperature Distribution in Germany. Geothermics 2012, 44, 65–77. [Google Scholar] [CrossRef]
- Schulz, R.; Jobmann, M. Hydrogeothermische Energiebilanz und Grundwasserhaushalt des Malmkarstes im Süddeutschen Molassebecken, Teilgebiet: Hydrogeothermik; Final Report; Institut für Geowissenschaftliche Gemeinschaftsaufgaben (GGA): Hannover, Germany, 1989; Archive Number 105040. [Google Scholar]
- Böhm, F.; Savvatis, A.; Steiner, U.; Schneider, M.; Koch, R. Lithofazielle Reservoircharakterisierung zur geothermischen Nutzung des Malm im Großraum München. Grundwasser 2013, 18, 3–13. [Google Scholar] [CrossRef]
- Department of Earth and Environmental Sciences, Geophysical Observatory, University of Munchen. BayernNetz (BH) Seismic Network, International Federation of Digital Seismograph Networks, 2001. [CrossRef]
- Lomax, A.; Virieux, J.; Volant, P.; Berge-Thierry, C. Probabilistic Earthquake Location in 3D and Layered Models. In Advances in Seismic Event Location; Thurber, C.H., Rabinowitz, N., Eds.; Modern Approaches in Geophysics; Springer: Dordrecht, The Netherlands, 2000; Volume 18, pp. 101–134. ISBN 978-90-481-5498-2. [Google Scholar]
- Lomax, A.; Michelini, A.; Curtis, A. Earthquake Location, Direct, Global-Search Methods. In Encyclopedia of Complexity and Systems Science; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2014; pp. 1–33. ISBN 978-3-642-27737-5. [Google Scholar]
- Beyreuther, M.; Barsch, R.; Krischer, L.; Megies, T.; Behr, Y.; Wassermann, J. ObsPy: A Python Toolbox for Seismology. Seismol. Res. Lett. 2010, 81, 530–533. [Google Scholar] [CrossRef]
- Butterworth, S. On the Theory of Filter Amplifiers. Exp. Wirel. Wirel. Eng. 1930, 7, 536–541. [Google Scholar]
- Maurer, V.; Gaucher, E.; Grunberg, M.; Koepke, R.; Pestourie, R.; Cuenot, N. Seismicity Induced during the Development of the Rittershoffen Geothermal Field, France. Geotherm Energy 2020, 8, 5. [Google Scholar] [CrossRef]
- Duncan, G.; Beresford, G. Slowness Adaptive F-k Filtering of Prestack Seismic Data. Geophysics 1994, 59, 140–147. [Google Scholar] [CrossRef]
- Zhirnov, A.A.; Stepanov, K.V.; Chernutsky, A.O.; Fedorov, A.K.; Nesterov, E.T.; Svelto, C.; Pnev, A.B.; Karasik, V.E. Influence of the Laser Frequency Drift in Phase-Sensitive Optical Time Domain Reflectometry. Opt. Spectrosc. 2019, 127, 656–663. [Google Scholar] [CrossRef]
- Trnkoczy, A. Understanding and Parameter Setting of STA/LTA Trigger Algorithm. In New Manual of Seismological Observatory Practice (NMSOP); Bormann, P., Ed.; Deutsches GeoForschungsZentrum GFZ: Potsdam, Germany, 2012. [Google Scholar]
- Withers, M.; Aster, R.; Young, C.; Beiriger, J.; Harris, M.; Moore, S.; Trujillo, J. A Comparison of Select Trigger Algorithms for Automated Global Seismic Phase and Event Detection. Bull. Seismol. Soc. Am. 1998, 88, 95–106. [Google Scholar] [CrossRef]
- SAGE: MiniSEED Standard. Available online: https://ds.iris.edu/ds/nodes/dmc/data/formats/miniseed/ (accessed on 7 May 2024).
- Lomax, A.; Curtis, A. Fast, Probabilistic Earthquake Location in 3D Models Using Oct-Tree Importance Sampling. Geophys. Res. Abstr. 2001, 3, 10–1007. [Google Scholar]
- Tarantola, A.; Valette, B. Inverse Problems = Quest for Information. J. Geophys. 1981, 50, 159–170. [Google Scholar]
- Moser, T.J.; van Eck, T.; Nolet, G. Hypocenter Determination in Strongly Heterogeneous Earth Models Using the Shortest Path Method. J. Geophys. Res. 1992, 97, 6563–6572. [Google Scholar] [CrossRef]
- Boatwright, J. A Spectral Theory for Circular Seismic Sources; Simple Estimates of Source Dimension, Dynamic Stress Drop, and Radiated Seismic Energy. Bull. Seismol. Soc. Am. 1980, 70, 1–27. [Google Scholar] [CrossRef]
- Van den Ende, M.P.A.; Ampuero, J.-P. Evaluating Seismic Beamforming Capabilities of DistributedAcoustic Sensing Arrays; Crustal structure and composition/Seismics, seismology, geoelectrics, and electromagnetics/Seismology. Solid Earth 2020, 12, 915–934. [Google Scholar] [CrossRef]
- Lior, I.; Sladen, A.; Mercerat, D.; Ampuero, J.-P.; Rivet, D.; Sambolian, S. Strain to Ground Motion Conversion of Distributed Acoustic Sensing Data for Earthquake Magnitude and Stress Drop Determination. Solid Earth 2021, 12, 1421–1442. [Google Scholar] [CrossRef]
- Anderson, J.G.; Hough, S.E. A Model for the Shape of the Fourier Amplitude Spectrum of Acceleration at High Frequencies. Bull. Seismol. Soc. Am. 1984, 74, 1969–1993. [Google Scholar] [CrossRef]
- Hanks, T.C.; Kanamori, H. A Moment Magnitude Scale. J. Geophys. Res. Solid Earth 1979, 84, 2348–2350. [Google Scholar] [CrossRef]
- Eshelby, J.D.; Peierls, R.E. The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1957, 241, 376–396. [Google Scholar] [CrossRef]
- Wadati, K.; Oki, S. On the Travel Time of Earthquake Waves. (Part II). J. Meteorol. Soc. Jpn. 1933, 11, 14–28. [Google Scholar] [CrossRef]
- Kinnaert, X.; Gaucher, E.; Kohl, T.; Achauer, U. Contribution of the Surface and Down-Hole Seismic Networks to the Location of Earthquakes at the Soultz-Sous-Forêts Geothermal Site (France). Pure Appl. Geophys. 2018, 175, 757–772. [Google Scholar] [CrossRef]
- Kinnaert, X.; Gaucher, E.; Achauer, U.; Kohl, T. Modelling Earthquake Location Errors at a Reservoir Scale: A Case Study in the Upper Rhine Graben. Geophys. J. Int. 2016, 206, 861–879. [Google Scholar] [CrossRef]
- Toledo, T.; Gaucher, E.; Jousset, P.; Jentsch, A.; Haberland, C.; Maurer, H.; Krawczyk, C.; Calò, M.; Figueroa, A. Local Earthquake Tomography at Los Humeros Geothermal Field (Mexico). JGR Solid Earth 2020, 125, e2020JB020390. [Google Scholar] [CrossRef]
- Bardainne, T.; Gaucher, E. Constrained Tomography of Realistic Velocity Models in Microseismic Monitoring Using Calibration Shots. Geophys. Prospect. 2010, 58, 739–753. [Google Scholar] [CrossRef]
- Willis, M.E.; Ellmauthaler, A.; Wu, X.; LeBlanc, M.J. Important Aspects of Acquiring Distributed Acoustic Sensing (DAS) Data for Geoscientists. In Geophysical Monograph Series; Li, Y., Karrenbach, M., Ajo-Franklin, J.B., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 33–44. ISBN 978-1-119-52179-2. [Google Scholar]
- Kristeková, M.; Kristek, J.; Moczo, P. Time-Frequency Misfit and Goodness-of-Fit Criteria for Quantitative Comparison of Time Signals. Geophys. J. Int. 2009, 178, 813–825. [Google Scholar] [CrossRef]
- Kristekova, M.; Kristek, J.; Moczo, P.; Day, S.M. Misfit Criteria for Quantitative Comparison of Seismograms. Bull. Seismol. Soc. Am. 2006, 96, 1836–1850. [Google Scholar] [CrossRef]
- Soh, J.; Copeland, M.; Puca, A.; Harris, M. Overview of Azure Infrastructure as a Service (IaaS) Services. In Microsoft Azure: Planning, Deploying, and Managing the Cloud; Soh, J., Copeland, M., Puca, A., Harris, M., Eds.; Apress: Berkeley, CA, USA, 2020; pp. 21–41. ISBN 978-1-4842-5958-0. [Google Scholar]
- Soh, J.; Copeland, M.; Puca, A.; Harris, M. Overview of Azure Platform as a Service. In Microsoft Azure: Planning, Deploying, and Managing the Cloud; Soh, J., Copeland, M., Puca, A., Harris, M., Eds.; Apress: Berkeley, CA, USA, 2020; pp. 43–55. ISBN 978-1-4842-5958-0. [Google Scholar]
Event | Number of DAS SP | DAS Spatial Sampling | Easting [km GK4] | Northing [km GK4] | Depth [m msl] | t0 (UTC) | RMS [s] | Len [m] |
---|---|---|---|---|---|---|---|---|
9 February | 55 | 10 m | 4473.33 | 5325.51 | 3570 | 2022.02.09T05:51:29.100 | 0.041 | 382 |
11 | 50 m | 4473.39 | 5325.31 | 3320 | 2022.02.09T05:51:29.088 | 0.086 | 546 | |
0 | - | 4473.65 | 5323.06 | 3287 | 2022.02.09T05:51:29.161 | 0.078 | 288 | |
22 April | 55 | 10 m | 4466.19 | 5330.36 | 1260 | 2022.04.22T13:26:11.664 | 0.016 | 222 |
6 | 100 m | 4466.14 | 5330.42 | 1177 | 2022.04.22T13:26:11.682 | 0.038 | 277 | |
1 | - | 4466.20 | 5330.66 | 1043 | 2022.04.22T13:26:11.772 | 0.068 | 649 |
Event | <f0> (Hz) | <Ω0> (m.s−2.Hz−1) | <M0> (N.m) | <MW> | <∆S> (Pa) | M0, ref (N.m) | MW, ref | ∆Sref (Pa) |
---|---|---|---|---|---|---|---|---|
9 February | 20 | 3.7 × 10−9 | 5.8 × 1011 | 1.7 | 1.2 × 107 | 5.4 × 1011 | 1.7 | 1.1 × 107 |
22 April | 25 | 1.9 × 10−9 | 1.1 × 109 | −0.1 | 3.4 × 104 | 1.1 × 109 | −0.1 | 4.2 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azzola, J.; Gaucher, E. Seismic Monitoring of a Deep Geothermal Field in Munich (Germany) Using Borehole Distributed Acoustic Sensing. Sensors 2024, 24, 3061. https://doi.org/10.3390/s24103061
Azzola J, Gaucher E. Seismic Monitoring of a Deep Geothermal Field in Munich (Germany) Using Borehole Distributed Acoustic Sensing. Sensors. 2024; 24(10):3061. https://doi.org/10.3390/s24103061
Chicago/Turabian StyleAzzola, Jérôme, and Emmanuel Gaucher. 2024. "Seismic Monitoring of a Deep Geothermal Field in Munich (Germany) Using Borehole Distributed Acoustic Sensing" Sensors 24, no. 10: 3061. https://doi.org/10.3390/s24103061
APA StyleAzzola, J., & Gaucher, E. (2024). Seismic Monitoring of a Deep Geothermal Field in Munich (Germany) Using Borehole Distributed Acoustic Sensing. Sensors, 24(10), 3061. https://doi.org/10.3390/s24103061