Comprehensive Review of RF MEMS Switches in Satellite Communications
Abstract
:1. Introduction
2. Advanced Technologies and Mechanisms in RF MEMS Switches
2.1. Actuation Mechanism
2.1.1. Electrostatically Actuated RF MEMS Switches
2.1.2. Piezoelectrically Actuated RF MEMS Switches
2.1.3. Electromagnetically Actuated RF MEMS Switches
2.1.4. Electrothermally Actuated RF MEMS Switches
2.2. Contact Mechanisms
2.2.1. Capacitive RF MEMS Switches
2.2.2. Ohmic RF MEMS Switches
3. Strategies for Optimizing RF MEMS Switch Performance
3.1. High Reliability
3.1.1. Reducing the Impact of Shocks
3.1.2. Reducing Actuation Voltage
3.1.3. Improvement of Contact Materials and Structures
3.1.4. Using Appropriate Packaging
3.2. Excellent RF Performance
3.2.1. Improving Equivalent Inductance
3.2.2. Increasing Capacitance Ratio
3.2.3. Using Serial-Parallel Configurations
4. Application in Reconfigurable Antennas
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marcelli, R.; Capoccia, G.; Sardi, G.M.; Bartolucci, G.; Margesin, B.; Iannacci, J.; Tagliapietra, G.; Giacomozzi, F.; Proietti, E. Metamaterials based RF microsystems for telecommunication applications. Ceram. Int. 2023, 49, 24379–24389. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- Lin, Z.; An, K.; Niu, H.; Hu, Y.; Chatzinotas, S.; Zheng, G.; Wang, J. SLNR-Based Secure Energy Efficient Beamforming in Multibeam Satellite Systems. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 2085–2088. [Google Scholar] [CrossRef]
- Iannacci, J.; Tagliapietra, G.; Bucciarelli, A. Exploitation of response surface method for the optimization of RF-MEMS reconfigurable devices in view of future beyond-5G, 6G and super-IoT applications. Sci. Rep. 2022, 12, 3543. [Google Scholar] [CrossRef]
- Wainstein, N.; Adam, G.; Yalon, E.; Kvatinsky, S. Radiofrequency Switches Based on Emerging Resistive Memory Technologies-A Survey. Proc. IEEE 2021, 109, 77–95. [Google Scholar] [CrossRef]
- Errando-Herranz, C.; Takabayashi, A.Y.; Edinger, P.; Sattari, H.; Gylfason, K.B.; Quack, N. MEMS for Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–16. [Google Scholar] [CrossRef]
- Donelli, M.; Iannacci, J. Exploitation of RF-MEMS Switches for the Design of Broadband Modulated Scattering Technique Wireless Sensors. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 44–48. [Google Scholar] [CrossRef]
- Shi, Y.L.; Zhou, C.; Cao, Z.B.; He, Y.R.; Guo, J.W.; Li, C.X.; Wu, Q.H.; Liang, K.; Li, Y.Z.; Lin, Y. Flexible radio-frequency micro electro-mechanical switch towards the applications of satellite communications. Npj Flex. Electron. 2022, 6, 10. [Google Scholar] [CrossRef]
- Bajwa, R.; Saleh, H.; Shojaeian, M.; Tekin, I.; Yapici, M.K. Nonlinear restructuring of patterned thin films by residual stress engineering into out-of-plane wavy-shaped electrostatic microactuators for high-performance radio-frequency switches. Microsyst. Nanoeng. 2023, 9, 13. [Google Scholar] [CrossRef]
- Rahiminejad, S.; Alonso-delPino, M.; Reck, T.J.; Peralta, A.; Lin, R.; Jung-Kubiak, C.; Chattopadhyay, G. A Low-Loss Silicon MEMS Phase Shifter Operating in the 550-GHz Band. IEEE Trans. Terahertz Sci. Technol. 2021, 11, 477–485. [Google Scholar] [CrossRef]
- Wang, W.; Asci, C.; Zeng, W.; Owyeung, R.; Sonkusale, S. A frequency-adjustable helical antenna using shape memory alloy. Appl. Phys. Lett. 2023, 123, 041901. [Google Scholar] [CrossRef]
- Gao, A.; Liu, K.; Liang, J.; Wu, T. AlN MEMS filters with extremely high bandwidth widening capability. Microsyst. Nanoeng. 2020, 6, 74. [Google Scholar] [CrossRef]
- Daneshmand, M.; Mansour, R.R. RF MEMS Satellite Switch Matrices. IEEE Microw. Mag. 2011, 12, 92–109. [Google Scholar] [CrossRef]
- Grant, P.D.; Denhoff, M.W.; Mansour, R.R. A comparison between RF MEMS switches and semiconductor switches. In Proceedings of the 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS’04), Banff, AB, Canada, 25–27 August 2004. [Google Scholar] [CrossRef]
- Zhu, K.; Wen, C.; Aljarb, A.A.; Xue, F.; Xu, X.; Tung, V.; Zhang, X.; Alshareef, H.N.; Lanza, M. The development of integrated circuits based on two-dimensional materials. Nat. Electron. 2021, 4, 775–785. [Google Scholar] [CrossRef]
- Dragoman, M.; Aldrigo, M.; Dragoman, D. Perspectives on Atomic-Scale Switches for High-Frequency Applications Based on Nanomaterials. Nanomaterials 2021, 11, 625. [Google Scholar] [CrossRef]
- Maunder, A.; Rao, M.; Robb, F.; Wild, J.M. Comparison of MEMS switches and PIN diodes for switched dual tuned RF coils. Magn. Reson. Med. 2018, 80, 1746–1753. [Google Scholar] [CrossRef]
- Kondaveeti, G.S.; Guha, K.; Karumuri, S.R.; Elsinawi, A. Design of a novel structure capacitive RF MEMS switch to improve performance parameters. IET Circuits Devices Syst. 2019, 13, 1093–1101. [Google Scholar] [CrossRef]
- Iannacci, J. Reliability of MEMS: A perspective on failure mechanisms, improvement solutions and best practices at development level. Displays 2015, 37, 62–71. [Google Scholar] [CrossRef]
- Chaudhary, R.; Mudimela, P.R. Comprehensive review of low pull-in voltage RF NEMS switches. Microsyst. Technol. 2023, 29, 19–33. [Google Scholar] [CrossRef]
- Kurmendra; Kumar, R. RF micro-electro-mechanical system (MEMS) capacitive switch performance parameters and improvement strategies. Microsyst. Technol. 2022, 28, 1765–1783. [Google Scholar] [CrossRef]
- Christodoulou, C.G.; Tawk, Y.; Lane, S.A.; Erwin, S.R. Reconfigurable Antennas for Wireless and Space Applications. Proc. IEEE 2012, 100, 2250–2261. [Google Scholar] [CrossRef]
- Tazzoli, A.; Cellere, G.; Autizi, E.; Peretti, V.; Paccagnella, A.; Meneghesso, G. Radiation sensitivity of ohmic rf-mems switches for spatial applications. In Proceedings of the 22nd International Conference on Micro Electro Mechanical Systems (MEMS), Sorrento, Italy, 25–29 January 2009; pp. 634–637. [Google Scholar] [CrossRef]
- Shea, H.R. Radiation sensitivity of microelectromechanical system devices. J. Micro-Nanolithogr. Mems Moems 2009, 8, 031303. [Google Scholar] [CrossRef]
- Dumas, N.; Trigona, C.; Pons, P.; Latorre, L.; Nouet, P. Design of smart drivers for electrostatic MEMS switches. Sens. Actuator A-Phys. 2011, 167, 422–432. [Google Scholar] [CrossRef]
- Sinha, N.; Jones, T.S.; Guo, Z.J.; Piazza, G. Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches. J. Microelectromech. Syst. 2012, 21, 484–496. [Google Scholar] [CrossRef]
- Cho, I.-J.; Yoon, E. Design and fabrication of a single membrane push-pull SPDT RF MEMS switch operated by electromagnetic actuation and electrostatic hold. J. Micromech. Microeng. 2010, 20, 035028. [Google Scholar] [CrossRef]
- Chae, U.; Yu, H.Y.; Lee, C.; Cho, I.J. A Hybrid RF MEMS Switch Actuated by the Combination of Bidirectional Thermal Actuations and Electrostatic Holding. IEEE Trans. Microw. Theory Tech. 2020, 68, 3461–3470. [Google Scholar] [CrossRef]
- Safarian, Z.; Hashemi, H. Capacitance-sharing, dual-output, compact, switched-capacitor DC-DC converter for low-power biomedical implants. Electron. Lett. 2014, 50, 1673–1674. [Google Scholar] [CrossRef]
- Allen, M.S.; Massad, J.E.; Field, R.V., Jr.; Dyck, C.W. Input and Design Optimization Under Uncertainty to Minimize the Impact Velocity of an Electrostatically Actuated MEMS Switch. J. Vib. Acoust. 2008, 130, 021009. [Google Scholar] [CrossRef]
- Shekhar, S.; Vinoy, K.J.; Ananthasuresh, G.K. Design, Fabrication and Characterization of Capacitive RF MEMS Switches with Low Pull-In Voltage. In Proceedings of the IEEE International Microwave and RF Conference (IMaRC), Bangalore, India, 15–17 December 2014; pp. 182–185. [Google Scholar]
- Sinha, N.; Wabiszewski, G.E.; Mahameed, R.; Felmetsger, V.V.; Tanner, S.M.; Carpick, R.W.; Piazza, G. Piezoelectric aluminum nitride nanoelectromechanical actuators. Appl. Phys. Lett. 2009, 95, 053106. [Google Scholar] [CrossRef]
- Guerre, R.; Drechsler, U.; Bhattacharyya, D.; Rantakari, P.; Stutz, R.; Wright, R.V.; Milosavljevic, Z.D.; Vaha-Heikkila, T.; Kirby, P.B.; Despont, M. Wafer-Level Transfer Technologies for PZT-Based RF MEMS Switches. J. Microelectromech. Syst. 2010, 19, 548–560. [Google Scholar] [CrossRef]
- Pulskamp, J.S.; Polcawich, R.G.; Rudy, R.Q.; Bedair, S.S.; Proie, R.M.; Ivanov, T.; Smith, G.L. Piezoelectric PZT MEMS technologies for small-scale robotics and RF applications. MRS Bull. 2012, 37, 1062–1070. [Google Scholar] [CrossRef]
- Benoit, R.R.; Rudy, R.Q.; Pulskamp, J.S.; Polcawich, R.G.; Bedair, S.S. Advances in piezoelectric PZT-based RF MEMS components and systems. J. Micromech. Microeng. 2017, 27, 083002. [Google Scholar] [CrossRef]
- Tan, Y.S.; Dong, Y.; Wang, X.H. Review of MEMS Electromagnetic Vibration Energy Harvester. J. Microelectromech. Syst. 2017, 26, 1–16. [Google Scholar] [CrossRef]
- Hua, Y.; Wang, S.Y.; Li, B.C.; Bai, G.Z.; Zhang, P.J. Dynamic Modeling and Anti-Disturbing Control of an Electromagnetic MEMS Torsional Micromirror Considering External Vibrations in Vehicular LiDAR. Micromachines 2021, 12, 69. [Google Scholar] [CrossRef] [PubMed]
- Niarchos, D. Magnetic MEMS key issues and some applications. Sens. Actuators A Phys. 2003, 106, 255–262. [Google Scholar] [CrossRef]
- Lin, T.-H.; Paul, S.; Lu, S.; Lu, H. A study on the performance and reliability of magnetostatic actuated RF MEMS switches. Microelectron. Reliab. 2009, 49, 59–65. [Google Scholar] [CrossRef]
- Bachman, M.; Zhang, Y.; Wang, M.; Li, G.P. High-Power Magnetically Actuated Microswitches Fabricated in Laminates. IEEE Electron Device Lett. 2012, 33, 1309–1311. [Google Scholar] [CrossRef]
- Pirmoradi, E.; Mirzajani, H.; Ghavifekr, H.B. Design and simulation of a novel electro-thermally actuated lateral RF MEMS latching switch for low power applications. Microsyst. Technol. 2015, 21, 465–475. [Google Scholar] [CrossRef]
- Zhu, Y.-Q.; Han, L.; Qin, M.; Huang, Q.-A. Novel DC-40 GHz MEMS series-shunt switch for high isolation and high power applications. Sens. Actuator A-Phys. 2014, 214, 101–110. [Google Scholar] [CrossRef]
- Shojaei-Asanjan, D.; Bakri-Kassem, M.; Mansour, R.R. Analysis of Thermally Actuated RF-MEMS Switches for Power Limiter Applications. J. Microelectromech. Syst. 2019, 28, 107–113. [Google Scholar] [CrossRef]
- Park, S.-J.; Reines, I.; Patel, C.; Rebeiz, G.M. High-Q RF-MEMS 46-GHz Tunable Evanescent-Mode Cavity Filter. IEEE Trans. Microw. Theory Tech. 2010, 58, 381–389. [Google Scholar] [CrossRef]
- Zareie, H.; Rebeiz, G.M. Compact High-Power SPST and SP4T RF MEMS Metal-Contact Switches. IEEE Trans. Microw. Theory Tech. 2014, 62, 297–305. [Google Scholar] [CrossRef]
- Pertin, O.; Kurmendra. Pull-in-voltage and RF analysis of MEMS based high performance capacitive shunt switch. Microelectron. J. 2018, 77, 5–15. [Google Scholar] [CrossRef]
- Yu, Y.-W.; Zhu, J.; Jia, S.-X.; Shi, Y. A High Isolation Series-Shunt RF MEMS Switch. Sensors 2009, 9, 4455–4464. [Google Scholar] [CrossRef]
- Shah, U.; Reck, T.; Frid, H.; Jung-Kubiak, C.; Chattopadhyay, G.; Mehdi, I.; Oberhammer, J. A 500-750 GHz RF MEMS Waveguide Switch. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 326–334. [Google Scholar] [CrossRef]
- Reck, T.; Jung-Kubiak, C.; Chattopadhyay, G. A 700-GHz MEMS Waveguide Switch. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 641–643. [Google Scholar] [CrossRef]
- Tian, W.; Li, P.; Yuan, L. Research and Analysis of MEMS Switches in Different Frequency Bands. Micromachines 2018, 9, 185. [Google Scholar] [CrossRef]
- Li, M.H.; Zhao, J.H.; You, Z.; Zhao, G.H. Design and fabrication of a low insertion loss capacitive RF MEMS switch with novel micro-structures for actuation. Solid-State Electron. 2017, 127, 32–37. [Google Scholar] [CrossRef]
- Sailaja, B.V.S.; Naik, K.K. Design and analysis of compact antenna with cascaded elliptical patch for reconfigurability using RF switches at satellite applications. Eur. Phys. J. Plus 2021, 136, 346. [Google Scholar] [CrossRef]
- Dattatreya, G.; Naik, K.K. A low volume flexible CPW-fed elliptical-ring with split-triangular patch dual-band antenna. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21766. [Google Scholar] [CrossRef]
- Monne, M.A.; Lan, X.; Zhang, C.; Chen, M.Y. Inkjet-Printed Flexible MEMS Switches for Phased-Array Antennas. Int. J. Antennas Propag. 2018, 2018, 4517848. [Google Scholar] [CrossRef]
- Pustan, M.; Birleanu, C.; Dudescu, C. Nanocharacterization of the adhesion effect and bending stiffness in optical MEMS. Appl. Surf. Sci. 2017, 421, 191–199. [Google Scholar] [CrossRef]
- Jaafar, H.; Beh, K.S.; Yunus, N.A.M.; Hasan, W.Z.W.; Shafie, S.; Sidek, O. A comprehensive study on RF MEMS switch. Microsyst. Technol. 2014, 20, 2109–2121. [Google Scholar] [CrossRef]
- Prudhvi Nadh, B.; Madhav, B.T.P.; Siva Kumar, M.; Anil Kumar, T.; Venkateswara Rao, M.; Mohan Reddy, S.S. MEMS-based reconfigurable and flexible antenna for body-centric wearable applications. J. Electromagn. Waves Appl. 2022, 36, 1389–1403. [Google Scholar] [CrossRef]
- Kim, D.-H.; Song, J.; Choi, W.M.; Kim, H.-S.; Kim, R.-H.; Liu, Z.; Huang, Y.Y.; Hwang, K.-C.; Zhang, Y.-w.; Rogers, J.A. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. USA 2008, 105, 18675–18680. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Wang, R.; Chen, L. Bending characteristics of radio frequency microelectromechanical system low-pass filter based on flexible substrate. Electron. Lett. 2021, 57, 860–862. [Google Scholar] [CrossRef]
- Han, L.; Chen, L.; Qin, R.; Wang, K.; Zhang, Z.; Nie, M.; Huang, X. Multi-Physical Models of Bending Characteristics on the Double-Clamped Beam Switch for Flexible Electronic Devices Application. Sensors 2020, 20, 7074. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.L.; Shen, Z.G. Recent Advances in Flexible RF MEMS. Micromachines 2022, 13, 1088. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, M.; Gao, C.; Ning, Y.; Yuan, Y.; Pang, W. Flexible lamb wave resonators with high figure of merit. Appl. Phys. Lett. 2019, 115, 093501. [Google Scholar] [CrossRef]
- Wright, R.V.; Hakemi, G.; Kirby, P.B. Integration of thin film bulk acoustic resonators onto flexible liquid crystal polymer substrates. Microelectron. Eng. 2011, 88, 1006–1009. [Google Scholar] [CrossRef]
- Iannacci, J. RF-MEMS technology as an enabler of 5G: Low-loss ohmic switch tested up to 110 GHz. Sens. Actuator A-Phys. 2018, 279, 624–629. [Google Scholar] [CrossRef]
- Attar, S.S.; Setoodeh, S.; Mansour, R.R.; Gupta, D. Low-Temperature Superconducting DC-Contact RF MEMS Switch for Cryogenic Reconfigurable RF Front-Ends. IEEE Trans. Microw. Theory Tech. 2014, 62, 1437–1447. [Google Scholar] [CrossRef]
- Attar, S.S.; Masnour, R.R. Integration of Niobium Low-Temperature-Superconducting RF Circuits With Gold-Based RF MEMS Switches. IEEE Trans. Appl. Supercond. 2015, 25, 1–6. [Google Scholar] [CrossRef]
- Tung, R.C.; Fruehling, A.; Peroulis, D.; Raman, A. Multiple Timescales and Modeling of Dynamic Bounce Phenomena in RF MEMS Switches. J. Microelectromech. Syst. 2014, 23, 137–146. [Google Scholar] [CrossRef]
- Bansal, D.; Bajpai, A.; Mehta, K.; Kumar, P.; Kumar, A. Improved Design of Ohmic RF MEMS Switch for Reduced Fabrication Steps. IEEE Trans. Electron Devices 2019, 66, 4361–4366. [Google Scholar] [CrossRef]
- Ansari, H.R.; Khosroabadi, S. Design and simulation of a novel RF MEMS shunt capacitive switch with a unique spring for Ka-band application. Microsyst. Technol. 2019, 25, 531–540. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Yu, J.; Wu, Q.; Li, M. Design of a graphene RF MEMS switch for X–V band. Microelectron. J. 2023, 141, 105955. [Google Scholar] [CrossRef]
- Ziegler, V.; Gautier, W.; Stehle, A.; Schoenlinner, B.; Prechtel, U. Challenges and opportunities for RF-MEMS in aeronautics and space. In Proceedings of the 2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), New Orleans, LA, USA, 11–13 January 2010. [Google Scholar] [CrossRef]
- Souchon, F.; Saint-Patrice, D.; Pornin, J.L.; Bouchu, D.; Baret, C.; Reig, B. Thin film packaged redundancy rf mems switches for space applications. In Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Kaohsiung, Taiwan, 18–22 June 2017; pp. 175–178. [Google Scholar] [CrossRef]
- Basu, A.; Adams, G.G.; McGruer, N.E. A review of micro-contact physics, materials, and failure mechanisms in direct-contact RF MEMS switches. J. Micromech. Microeng. 2016, 26, 104004. [Google Scholar] [CrossRef]
- van Spengen, W.M. Capacitive RF MEMS switch dielectric charging and reliability: A critical review with recommendations. J. Micromech. Microeng. 2012, 22, 23. [Google Scholar] [CrossRef]
- Mulloni, V.; Barbato, M.; Meneghesso, G. Long-term lifetime prediction for RF-MEMS switches. J. Micromech. Microeng. 2016, 26, 74004. [Google Scholar] [CrossRef]
- Birmpiliotis, D.; Stavrinidis, G.; Koutsoureli, M.; Konstantinidis, G.; Papaioannou, G. On the Discharge Transport Mechanisms Through the Dielectric Film in MEMS Capacitive Switches. J. Microelectromech. Syst. 2020, 29, 202–213. [Google Scholar] [CrossRef]
- Zaghloul, U.; Papaioannou, G.; Coccetti, F.; Pons, P.; Plana, R. Dielectric charging in silicon nitride films for MEMS capacitive switches: Effect of film thickness and deposition conditions. Microelectron. Reliab. 2009, 49, 1309–1314. [Google Scholar] [CrossRef]
- Mardivirin, D.; Pothier, A.; Crunteanu, A.; Vialle, B.; Blondy, P. Charging in Dielectricless Capacitive RF-MEMS Switches. IEEE Trans. Microw. Theory Tech. 2009, 57, 231–236. [Google Scholar] [CrossRef]
- Xi, W.; Elsinawi, A.; Guha, K.; Karumuri, S.R.; Shaikh-Ahmad, J. A study of the effect of transient stresses on the fatigue life of RF MEMS switches. Int. J. Numer. Model.-Electron. Netw. Devices Fields 2019, 32, e2570. [Google Scholar] [CrossRef]
- Mulloni, V. Instability and Drift Phenomena in Switching RF-MEMS Microsystems. Actuators 2019, 8, 15. [Google Scholar] [CrossRef]
- Guerrieri, A.; Frangi, A.; Falorni, L. An Investigation on the Effects of Contact in MEMS Oscillators. J. Microelectromech. Syst. 2018, 27, 963–972. [Google Scholar] [CrossRef]
- Mulloni, V.; Lorenzelli, L.; Margesin, B.; Barbato, M.; Meneghesso, G. Temperature as an accelerating factor for lifetime estimation of RF-MEMS switches. Microelectron. Eng. 2016, 160, 63–67. [Google Scholar] [CrossRef]
- Philippine, M.A.; Timpe, S.J.; Komvopoulos, K. Evolution of interfacial adhesion force in dynamic micromachines due to repetitive impact loading. Appl. Phys. Lett. 2007, 91, 063102. [Google Scholar] [CrossRef]
- Tazzoli, A.; Barbato, M.; Mattiuzzo, F.; Ritrovato, V.; Meneghesso, G. Study of the actuation speed, bounces occurrences, and contact reliability of ohmic RF-MEMS switches. Microelectron. Reliab. 2010, 50, 1604–1608. [Google Scholar] [CrossRef]
- Godara, R.K.; Joglekar, M.M. Suppression of contact bounce in beam-type microelectromechanical switches using a feedforward control scheme. J. Vib. Control 2018, 24, 5502–5513. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Ghommem, M.; Abdelkefi, A. Nonlinear analysis and characteristics of electrically-coupled microbeams under mechanical shock. Microsyst. Technol. 2019, 25, 829–843. [Google Scholar] [CrossRef]
- Jain, A.; Palit, S.; Alam, M.A. A Physics-Based Predictive Modeling Framework for Dielectric Charging and Creep in RF MEMS Capacitive Switches and Varactors. J. Microelectromech. Syst. 2012, 21, 420–430. [Google Scholar] [CrossRef]
- Jain, A.; Nair, P.R.; Alamb, M.A. Strategies for dynamic soft-landing in capacitive microelectromechanical switches. Appl. Phys. Lett. 2011, 98, 3. [Google Scholar] [CrossRef]
- Xiang, X.J.; Dai, X.H.; Wang, K.; Sun, S.; Ding, G.F.; Zhao, X.L. A Self-Adaptive Stiffness Approach to Improving t he Robustness of Electrostatic Switches Against Parameter Variations. IEEE Electron Device Lett. 2018, 39, 1748–1751. [Google Scholar] [CrossRef]
- Shekhar, S.; Vinoy, K.J.; Ananthasuresh, G.K. Surface-Micromachined Capacitive RF Switches With Low Actuation Voltage and Steady Contact. J. Microelectromech. Syst. 2017, 26, 643–652. [Google Scholar] [CrossRef]
- Spasos, M.; Tsiakmakis, K.; Charalampidis, N.; Nilavalan, R. RF-MEMS switch actuation pulse optimization using Taguchi’s method. Microsyst. Technol. 2011, 17, 1351–1359. [Google Scholar] [CrossRef]
- Wong, W.S.H.; Lai, C.H. Longer MEMS Switch Lifetime Using Novel Dual-Pulse Actuation Voltage. IEEE Trans. Device Mater. Reliab. 2009, 9, 569–575. [Google Scholar] [CrossRef]
- Ou, K.S.; Chen, K.S.; Yang, T.S.; Lee, S.Y. Fast Positioning and Impact Minimizing of MEMS Devices by Suppression of Motion-Induced Vibration by Command-Shaping Method. J. Microelectromech. Syst. 2011, 20, 128–139. [Google Scholar] [CrossRef]
- Barbato, M.; Giliberto, V.; Cester, A.; Meneghesso, G. A Combined Mechanical and Electrical Characterization Procedure for Investigating the Dynamic Behavior of RF-MEMS Switches. IEEE Trans. Device Mater. Reliab. 2014, 14, 13–20. [Google Scholar] [CrossRef]
- Spasos, M.; Nilavalan, R. Resistive damping implementation as a method to improve controllability in stiff ohmic RF-MEMS switches. Microsyst. Technol. 2013, 19, 1935–1943. [Google Scholar] [CrossRef]
- Kurmendra; Kumar, R. Design and Analysis of MEMS Shunt Capacitive Switch with Si3N4 Dielectric and Au Beam Material to Improve Actuation Voltage and RF Performance in Consideration With and Without Circular Perforations. Trans. Electr. Electron. Mater. 2019, 20, 299–308. [Google Scholar] [CrossRef]
- Yamane, D.; Sun, W.; Seita, H.; Kawasaki, S.; Fujita, H.; Toshiyoshi, H. A Ku-band Dual-SPDT RF-MEMS Switch by Double-Side SOI Bulk Micromachining. J. Microelectromech. Syst. 2011, 20, 1211–1221. [Google Scholar] [CrossRef]
- Pustan, M.; Chiorean, R.; Birleanu, C.; Dudescu, C.; Muller, R.; Baracu, A.; Voicu, R. Reliability design of thermally actuated MEMS switches based on V-shape beams. Microsyst. Technol. 2017, 23, 3863–3871. [Google Scholar] [CrossRef]
- Pal, J.; Zhu, Y.; Lu, J.; Dao, D.V. A Novel Electrothermally Actuated RF MEMS Switch for Wireless Applications. In Proceedings of the 8th IEEE Conference on Industrial Electronics and Applications (ICIEA), Melbourne, VIC, Australia, 19–21 June 2013; pp. 1594–1598. [Google Scholar] [CrossRef]
- Benoit, R.R.; Rudy, R.Q.; Pulskamp, J.S.; Polcawich, R.G. Piezoelectric RF MEMS Switches on Si-on-Sapphire Substrates. J. Microelectromech. Syst. 2020, 29, 1087–1090. [Google Scholar] [CrossRef]
- Zhu, Y.; Pal, J. Low-Voltage and High-Reliability RF MEMS Switch with Combined Electrothermal and Electrostatic Actuation. Micromachines 2021, 12, 1237. [Google Scholar] [CrossRef]
- Zhang, S.; Su, W.; Zaghloul, M. Design and Simulation of a Thermally Actuated MEMS Switch for Microwave Circuits. Int. J. RF Microw. Comput.-Aided Eng. 2009, 19, 492–501. [Google Scholar] [CrossRef]
- Zolfaghari, P.; Arzhang, V.; Zolfaghari, M. A low loss and power efficient micro-electro-thermally actuated RF MEMS switch for low power and low loss applications. Microsyst. Technol. 2018, 24, 3019–3032. [Google Scholar] [CrossRef]
- Zhu, Y.-Q.; Han, L.; Wang, L.-F.; Tang, J.-Y.; Huang, Q.-A. A Novel Three-State RF MEMS Switch for Ultrabroadband (DC-40 GHz) Applications. IEEE Electron Device Lett. 2013, 34, 1062–1064. [Google Scholar] [CrossRef]
- Cho, I.-J.; Song, T.; Baek, S.-H.; Yoon, E. A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces. IEEE Trans. Microw. Theory Tech. 2005, 53, 2450–2457. [Google Scholar] [CrossRef]
- Ikehashi, T.; Ohguro, T.; Ogawa, E.; Yamazaki, H.; Kojima, K.; Matsuo, M.; Ishimaru, K.; Ishiuchi, H. A Robust RF MEMS Variable Capacitor with Piezoelectric and Electrostatic Actuation. In Proceedings of the 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 11–16 June 2006. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Rasool, H.I.; Ophus, C.; Klug, W.S.; Zettl, A.; Gimzewski, J.K. Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat. Commun. 2013, 4, 2811. [Google Scholar] [CrossRef]
- Cao, C.; Daly, M.; Singh, C.V.; Sun, Y.; Filleter, T. High strength measurement of monolayer graphene oxide. Carbon 2015, 81, 497–504. [Google Scholar] [CrossRef]
- Sun, J.; Schmidt, M.E.; Muruganathan, M.; Chong, H.M.H.; Mizuta, H. Large-scale nanoelectromechanical switches based on directly deposited nanocrystalline graphene on insulating substrates. Nanoscale 2016, 8, 6659–6665. [Google Scholar] [CrossRef]
- Sharma, P.; Perruisseau-Carrier, J.; Moldovan, C.; Ionescu, A.M. Electromagnetic Performance of RF NEMS Graphene Capacitive Switches. IEEE Trans. Nanotechnol. 2014, 13, 70–79. [Google Scholar] [CrossRef]
- Bunch, J.S.; van der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493. [Google Scholar] [CrossRef]
- Kim, S.M.; Song, E.B.; Lee, S.; Seo, S.; Seo, D.H.; Hwang, Y.; Candler, R.; Wang, K.L. Suspended few-layer graphene beam electromechanical switch with abrupt on-off characteristics and minimal leakage current. Appl. Phys. Lett. 2011, 99, 023103. [Google Scholar] [CrossRef]
- Jang, C.; Adam, S.; Chen, J.H.; Williams, E.D.; Das Sarma, S.; Fuhrer, M.S. Tuning the effective fine structure constant in graphene: Opposing effects of dielectric screening on short- and long-range potential scattering. Phys. Rev. Lett. 2008, 101, 146805. [Google Scholar] [CrossRef]
- Mulloni, V.; Iannacci, J.; Bartali, R.; Micheli, V.; Colpo, S.; Laidani, N.; Margesin, B. Gold-based thin multilayers for ohmic contacts in RF-MEMS switches. Microsyst. Technol. 2012, 18, 965–971. [Google Scholar] [CrossRef]
- Mulloni, V.; Margesin, B.; Farinelli, P.; Marcelli, R.; Lucibello, A.; De Angelis, G. Cycling reliability of RF-MEMS switches with Gold-Platinum multilayers as contact material. Microsyst. Technol. 2017, 23, 3843–3850. [Google Scholar] [CrossRef]
- Chen, L.; Lee, H.; Guo, Z.J.; McGruer, N.E.; Gilbert, K.W.; Mall, S.; Leedy, K.D.; Adams, G.G. Contact resistance study of noble metals and alloy films using a scanning probe microscope test station. J. Appl. Phys. 2007, 102, 074910. [Google Scholar] [CrossRef]
- Czaplewski, D.A.; Nordquist, C.D.; Dyck, C.W.; Patrizi, G.A.; Kraus, G.M.; Cowan, W.D. Lifetime limitations of ohmic, contacting RF MEMS switches with Au, Pt and Ir contact materials due to accumulation of ‘friction polymer’ on the contacts. J. Micromech. Microeng. 2012, 22, 105005. [Google Scholar] [CrossRef]
- Wang, J.-b.; Ren, Z.; Hou, Y.; Yan, X.-l.; Liu, P.-z.; Zhang, H.; Zhang, H.-x.; Guo, J.-j. A review of graphene synthesis at low temperatures by CVD methods. New Carbon Mater. 2020, 35, 193–208. [Google Scholar] [CrossRef]
- Uemura, K.; Ikuta, T.; Maehashi, K. Turbostratic stacked CVD graphene for high-performance devices. Jpn. J. Appl. Phys. 2018, 57, 030311. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Zou, X.; Wu, S.; Wan, D.; Cao, A.; Liao, L.; Yuan, Q.; Duan, X. Ultrafine Graphene Nanomesh with Large On/Off Ratio for High-Performance Flexible Biosensors. Adv. Funct. Mater. 2017, 27, 1604096. [Google Scholar] [CrossRef]
- Seo, M.-H.; Ko, J.-H.; Lee, J.O.; Ko, S.-D.; Mun, J.H.; Cho, B.J.; Kim, Y.-H.; Yoon, J.-B. >1000-Fold Lifetime Extension of a Nickel Electromechanical Contact Device via Graphene. ACS Appl. Mater. Interfaces 2018, 10, 9085–9093. [Google Scholar] [CrossRef]
- Liu, Y.; Bey, Y.; Liu, X. Extension of the Hot-Switching Reliability of RF-MEMS Switches Using a Series Contact Protection Technique. IEEE Trans. Microw. Theory Tech. 2016, 64, 3151–3162. [Google Scholar] [CrossRef]
- Liu, Y.H.; Bey, Y.S.; Liu, X.G. High-Power High-Isolation RF-MEMS Switches With Enhanced Hot-Switching Reliability Using a Shunt Protection Technique. IEEE Trans. Microw. Theory Tech. 2017, 65, 3188–3199. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Yu, B.; Liu, X. A Compact Single-Cantilever Multicontact RF-MEMS Switch With Enhanced Reliability. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 191–193. [Google Scholar] [CrossRef]
- Mousavi, M.; Alzgool, M.; Towfighian, S. Electrostatic levitation: An elegant method to control MEMS switching operation. Nonlinear Dyn. 2021, 104, 3139–3155. [Google Scholar] [CrossRef]
- Park, J.; Shim, E.S.; Choi, W.; Kim, Y.; Kwon, Y.; Cho, D.-i. A Non-Contact-Type RF MEMS Switch for 24-GHz Radar Applications. J. Microelectromech. Syst. 2009, 18, 163–173. [Google Scholar] [CrossRef]
- Pal, J.; Zhu, Y.; Lu, J.; Khan, F.; Dao, D. A Novel Three-State Contactless RF Micromachined Switch for Wireless Applications. IEEE Electron Device Lett. 2015, 36, 1363–1365. [Google Scholar] [CrossRef]
- Joyce, R.; George, M.; Bhanuprakash, L.; Panwar, D.K.; Bhatia, R.R.; Varghese, S.; Akhtar, J. Investigation on the effects of low-temperature anodic bonding and its reliability for MEMS packaging using destructive and non-destructive techniques. J. Mater. Sci.-Mater. Electron. 2018, 29, 217–231. [Google Scholar] [CrossRef]
- Walker, M.J.; Berman, D.; Nordquist, C.; Krim, J. Electrical Contact Resistance and Device Lifetime Measurements of Au-RuO2-Based RF MEMS Exposed to Hydrocarbons in Vacuum and Nitrogen Environments. Tribol. Lett. 2011, 44, 305–314. [Google Scholar] [CrossRef]
- Comart, I.; Cetintepe, C.; Sagiroglu, E.; Demir, S.; Akin, T. Development and Modeling of a Wafer-Level BCB Packaging Method for Capacitive RF MEMS Switches. J. Microelectromech. Syst. 2019, 28, 724–731. [Google Scholar] [CrossRef]
- Fukuda, K.; Miyamoto, S.; Nakahara, M.; Suzuki, S.; Dhamrin, M.; Maeda, K.; Fujiwara, K.; Uraoka, Y.; Usami, N. Epitaxial growth of SiGe films by annealing Al-Ge alloyed pastes on Si substrate. Sci. Rep. 2022, 12, 14770. [Google Scholar] [CrossRef]
- Wind, L.; Sistani, M.; Song, Z.; Maeder, X.; Pohl, D.; Michler, J.; Rellinghaus, B.; Weber, W.M.; Lugstein, A. Monolithic Metal-Semiconductor-Metal Heterostructures Enabling Next-Generation Germanium Nanodevices. ACS Appl. Mater. Interfaces 2021, 13, 12393–12399. [Google Scholar] [CrossRef]
- Sood, S.; Farrens, S.; Pinker, R.; Xie, J.; Catabay, W. Al-Ge eutectic wafer bonding and bond characterization for CMOS compatible wafer packaging. ECS Trans. 2010, 33, 93–101. [Google Scholar] [CrossRef]
- Najah, M.; Ecoffey, S.; Singh, T.; Ferguson, M.; Roby, L.P.; Renaud, J.; Gondcharton, P.; Banville, F.A.; Boucherit, M.; Charlebois, S.A.; et al. Characterization of a Wafer-Level Packaged Au-Ru/AlCu Contact for Micro-Switches. J. Microelectromech. Syst. 2022, 31, 700–711. [Google Scholar] [CrossRef]
- Belkadi, N.; Nadaud, K.; Hallepee, C.; Passerieux, D.; Blondy, P. Zero-Level Packaged RF-MEMS Switched Capacitors on Glass Substrates. J. Microelectromech. Syst. 2020, 29, 109–116. [Google Scholar] [CrossRef]
- Khan, F.; Younis, M.I. RF MEMS electrostatically actuated tunable capacitors and their applications: A review. J. Micromech. Microeng. 2022, 32, 013002. [Google Scholar] [CrossRef]
- Sharma, U.; Dutta, S.; Sharma, E.K. Improved broadband (75-110GHz) radio frequency characteristics of MEMS shunt switches on quartz substrate. Microsyst. Technol. 2019, 25, 977–984. [Google Scholar] [CrossRef]
- Bansal, D.; Bajpai, A.; Kumar, P.; Kaur, M.; Rangra, K. Fabrication and analysis of radiofrequency MEMS series capacitive single-pole double-throw switch. J. Micro-Nanolithogr. Mems Moems 2016, 15, 045001. [Google Scholar] [CrossRef]
- Spengen, W.M.v.; Puers, R.; Mertens, R.; Wolf, I.D. A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches. J. Micromech. Microeng. 2004, 14, 514–521. [Google Scholar] [CrossRef]
- Zhang, N.B.; Song, R.L.; Liu, J.; Yang, J. A Packaged THz Shunt RF MEMS Switch With Low Insertion Loss. IEEE Sens. J. 2021, 21, 23829–23837. [Google Scholar] [CrossRef]
- Angira, M.; Bansal, D.; Kumar, P.; Mehta, K.; Rangra, K. A novel capacitive RF-MEMS switch for multi-frequency operation. Superlattices Microstruct. 2019, 133, 106204. [Google Scholar] [CrossRef]
- Ma, L.-Y.; Nordin, A.N.; Soin, N. A novel design of a low-voltage low-loss T-match RF-MEMS capacitive switch. Microsyst. Technol. 2018, 24, 561–574. [Google Scholar] [CrossRef]
- Yao, J.J. RF MEMS from a device perspective. J. Micromech. Microeng. 2000, 10, R9–R38. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, Z.; Guo, X.; Liu, Z. A High-Linearity SP12T RF MEMS Switch Using Parallel Dual-Cantilevers for 5G and Beyond Applications. IEEE Electron Device Lett. 2018, 39, 1608–1611. [Google Scholar] [CrossRef]
- Ma, L.Y.; Soin, N.; Daut, M.H.M.; Hatta, S. Comprehensive Study on RF-MEMS Switches Used for 5G Scenario. IEEE Access 2019, 7, 107506–107522. [Google Scholar] [CrossRef]
- Badia, M.F.-B.; Buitrago, E.; Ionescu, A.M. RF MEMS Shunt Capacitive Switches Using AlN Compared to Si3N4 Dielectric. J. Microelectromech. Syst. 2012, 21, 1229–1240. [Google Scholar] [CrossRef]
- He, X.J.; Lv, Z.Q.; Liu, B.; Li, Z.H. High-isolation lateral RF MEMS capacitive switch based on HfO2 dielectric for high frequency applications. Sens. Actuator A-Phys. 2012, 188, 342–348. [Google Scholar] [CrossRef]
- Sravani, K.G.; Rao, K.S. Analysis of RF MEMS shunt capacitive switch with uniform and non-uniform meanders. Microsyst. Technol. 2018, 24, 1309–1315. [Google Scholar] [CrossRef]
- Persano, A.; Cola, A.; De Angelis, G.; Taurino, A.; Siciliano, P.; Quaranta, F. Capacitive RF MEMS Switches With Tantalum-Based Materials. J. Microelectromech. Syst. 2011, 20, 365–370. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, G.H.; Chung, K.W.; Bu, J.U. Monolithically integrated micromachined RF MEMS capacitive switches. Sens. Actuators A Phys. 2001, 89, 88–94. [Google Scholar] [CrossRef]
- Al-Dahleh, R.; Mansour, R.R. High-Capacitance-Ratio Warped-Beam Capacitive MEMS Switch Designs. J. Microelectromech. Syst. 2010, 19, 538–547. [Google Scholar] [CrossRef]
- Fouladi, S.; Mansour, R.R. Capacitive RF MEMS Switches Fabricated in Standard 0.35-μm CMOS Technology. IEEE Trans. Microw. Theory Tech. 2010, 58, 478–486. [Google Scholar] [CrossRef]
- Singh, T.; Khaira, N. High Isolation Single-Pole Four-Throw RF MEMS Switch Based on Series-Shunt Configuration. Sci. World J. 2014, 2014, 605894. [Google Scholar] [CrossRef] [PubMed]
- Iannacci, J.; Huhn, M.; Tschoban, C.; Pötter, H. RF-MEMS Technology for Future (5G) Mobile and High-Frequency Applications: Reconfigurable 8-Bit Power Attenuator Tested up to 110 GHz. IEEE Electron Device Lett. 2016, 37, 1646–1649. [Google Scholar] [CrossRef]
- Dey, S.; Koul, S.K.; Poddar, A.K.; Rohde, U.L. Ku to V-band 4-bit MEMS phase shifter bank using high isolation SP4T switches and DMTL structures. J. Micromech. Microeng. 2017, 27, 105010. [Google Scholar] [CrossRef]
- Khodapanahandeh, M.; Motallebi, A.; Mirzajani, H.; Ghavifekr, H.B. DC-Contact, Wide Band, Electrostatically Actuated Lateral RF MEMS Switch for Efficient Signal Switching. In Proceedings of the IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, Iran, 22–22 December 2017; pp. 225–229. [Google Scholar] [CrossRef]
- Singh, T. Design and finite element modeling of series-shunt configuration based RF MEMS switch for high isolation operation in K-Ka band. J. Comput. Electron. 2015, 14, 167–179. [Google Scholar] [CrossRef]
- Dadgar, M.; Najafiaghdam, E. A high contact force and high-isolation radio-frequency microelectromechanical systems switch for radio-frequency front-end applications. Int. J. Circuit Theory Appl. 2022, 50, 1442–1461. [Google Scholar] [CrossRef]
- Niu, H.; Chu, Z.; Zhou, F.; Zhu, Z.; Zhang, M.; Wong, K.-K. Weighted Sum Secrecy Rate Maximization Using Intelligent Reflecting Surface. IEEE Trans. Commun. 2021, 69, 6170–6184. [Google Scholar] [CrossRef]
- Niu, H.; Chu, Z.; Zhou, F.; Zhu, Z.; Zhen, L.; Wong, K.-K. Robust Design for Intelligent Reflecting Surface-Assisted Secrecy SWIPT Network. IEEE Trans. Wirel. Commun. 2022, 21, 4133–4149. [Google Scholar] [CrossRef]
- Hassan, M.M.; Zahid, Z.; Khan, A.A.; Rashid, I.; Rauf, A.; Maqsood, M.; Bhatti, F.A. Two element MIMO antenna with frequency reconfigurable characteristics utilizing RF MEMS for 5G applications. J. Electromagn. Waves Appl. 2020, 34, 1210–1224. [Google Scholar] [CrossRef]
- Lago, H.; Zakaria, Z.; Jamlos, M.F.; Soh, P.J. A wideband reconfigurable folded planar dipole using MEMS and hybrid polymeric substrates. AEU-Int. J. Electron. Commun. 2019, 99, 347–353. [Google Scholar] [CrossRef]
- Wright, M.D.; Baron, W.; Miller, J.; Tuss, J.; Zeppettella, D.; Ali, M. MEMS Reconfigurable Broadband Patch Antenna for Conformal Applications. IEEE Trans. Antennas Propag. 2018, 66, 2770–2778. [Google Scholar] [CrossRef]
- Costantine, J.; Tawk, Y.; Barbin, S.E.; Christodoulou, C.G. Reconfigurable Antennas: Design and Applications. Proc. IEEE 2015, 103, 424–437. [Google Scholar] [CrossRef]
- won Jung, C.; Lee, M.J.; Li, G.P.; De Flaviis, F. Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches. IEEE Trans. Antennas Propag. 2012, 54, 455–463. [Google Scholar] [CrossRef]
- Patel, S.K.; Argyropoulos, C.; Kosta, Y.P. Pattern controlled and frequency tunable microstrip antenna loaded with multiple split ring resonators. IET Microw. Antennas Propag. 2018, 12, 390–394. [Google Scholar] [CrossRef]
- Greda, L.A.; Winterstein, A.; Dreher, A.; Figur, S.A.; Schoenlinner, B.; Ziegler, V.; Haubold, M.; Brueck, M.W. A Satellite Multiple-Beam Antenna for High-Rate Data Relays. Prog. Electromagn. Res.-PIER 2014, 149, 133–145. [Google Scholar] [CrossRef]
- Sailaja, B.V.S.; Naik, K.K. CPW-fed elliptical shaped patch antenna with RF switches for wireless applications. Microelectron. J. 2021, 111, 105019. [Google Scholar] [CrossRef]
- Gupta, A.K.S.a.N. Material selection of RF-MEMS switch used for reconfigurable antenna using Ashby’s methodology. Prog. Electromagn. Res. Lett. 2012, 31, 147–157. [Google Scholar] [CrossRef]
- Cheng, C.-C.; Lakshminarayanan, B.; Abbaspour-Tamijani, A. A Programmable Lens-Array Antenna With Monolithically Integrated MEMS Switches. IEEE Trans. Microw. Theory Tech. 2009, 57, 1874–1884. [Google Scholar] [CrossRef]
- MacCartney, G.R.; Rappaport, T.S.; Rangan, S. Rapid Fading Due to Human Blockage in Pedestrian Crowds at 5G Millimeter-Wave Frequencies. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM), Singapore, 4–8 December 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, S.; Xiong, H.; Qiu, R.; Sun, Y.; Zheng, S.; Yang, Z. Localization of Multiple Partial Discharge Sources in Air-Insulated Substation Space by RF Antenna Sensors Array. IEEE Sens. J. 2022, 22, 14481–14490. [Google Scholar] [CrossRef]
- Luo, Y.; Kikuta, K.; Han, Z.; Takahashi, T.; Hirose, A.; Toshiyoshi, H. An Active Metamaterial Antenna With MEMS-Modulated Scanning Radiation Beams. IEEE Electron Device Lett. 2016, 37, 920–923. [Google Scholar] [CrossRef]
- Rajagopalan, H.; Kovitz, J.M.; Rahmat-Samii, Y. MEMS Reconfigurable Optimized E-Shaped Patch Antenna Design for Cognitive Radio. IEEE Trans. Antennas Propag. 2014, 62, 1056–1064. [Google Scholar] [CrossRef]
- Wang, M.; Kilgore, I.M.; Steer, M.B.; Adams, J.J. Characterization of Intermodulation Distortion in Reconfigurable Liquid Metal Antennas. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 279–282. [Google Scholar] [CrossRef]
- Kornev, V.K.; Soloviev, I.I.; Klenov, N.V.; Sharafiev, A.V.; Mukhanov, O.A. Linear Bi-SQUID Arrays for Electrically Small Antennas. Ieee Trans. Appl. Supercond. 2011, 21, 713–716. [Google Scholar] [CrossRef]
- Chaabane, G.; Madrangeas, V.; Chatras, M.; Arnaud, E.; Huitema, L.; Blondy, P. High-Linearity 3-Bit Frequency-Tunable Planar Inverted-F Antenna for RF Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 983–986. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Zhang, K.; Zhang, Q.; Li, X.; Jiang, Z.; Ren, X.; Yuan, Y. GPS satellite differential code bias estimation with current eleven low earth orbit satellites. J. Geod. 2021, 95, 1–18. [Google Scholar] [CrossRef]
- Wang, S.; Tang, X.; Liu, X.; Wang, F.; Zhuang, Z. Doppler frequency-code phase division multiple access technique for LEO navigation signals. GPS Solut. 2022, 26, 98. [Google Scholar] [CrossRef]
- Vouyioukas, D. A Survey on Beamforming Techniques for Wireless MIMO Relay Networks. Int. J. Antennas Propag. 2013, 2013, 745018. [Google Scholar] [CrossRef]
- Ma, Y.; Tian, W.; Wang, J.; Hou, W.; Li, Y.; Chen, M.; Li, Z.; Zhang, Z. An Image-Aware Based Smart Antenna Capable of Automatic Beam Switching for Indoor Mobile Communication. IEEE Access 2020, 8, 379–388. [Google Scholar] [CrossRef]
- Ziko, M.H.; Koel, A. Optimum Electromagnetic Modelling of RF MEMS Switches. Elektron. Ir Elektrotechnika 2018, 24, 46–50. [Google Scholar] [CrossRef]
- Lysenko, I.E.; Tkachenko, A.V.; Sherova, E.V.; Nikitin, A.V. Analytical Approach in the Development of RF MEMS Switches. Electronics 2018, 7, 415. [Google Scholar] [CrossRef]
- Obuh, I.E.; Doychinov, V.; Steenson, D.P.; Akkaraekthalin, P.; Robertson, I.D.; Somjit, N. Low-Cost Microfabrication for MEMS Switches and Varactors. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 1702–1710. [Google Scholar] [CrossRef]
- Dey, S.; Koul, S.K.; Poddar, A.K.; Rohde, U.L. Reliable and Compact 3-and 4-Bit Phase Shifters Using MEMS SP4T and SP8T Switches. J. Microelectromech. Syst. 2018, 27, 113–124. [Google Scholar] [CrossRef]
- Mirzajani, H.; Ilkhechi, A.K.; Zolfaghari, P.; Azadbakht, M.; Aghdam, E.N.; Ghavifekr, H.B. Power efficient, low loss and ultra-high isolation RF MEMS switch dedicated for antenna switch applications. Microelectron. J. 2017, 69, 64–72. [Google Scholar] [CrossRef]
- Nguyen, C.T.C. MEMS-Based RF Channel Selection for True Software-Defined Cognitive Radio and Low-Power Sensor Communications. IEEE Commun. Mag. 2013, 51, 110–119. [Google Scholar] [CrossRef]
- Subramanian, M.B.; Joshitha, C.; Sreeja, B.S.; Nair, P. Multiport RF MEMS switch for satellite payload applications. Microsyst. Technol. 2018, 24, 2379–2387. [Google Scholar] [CrossRef]
- Ilkhechi, A.K.; Mirzajani, H.; Aghdam, E.N.; Ghavifekr, H.B. A new electrostatically actuated rotary three-state DC-contact RF MEMS switch for antenna switch applications. Microsyst. Technol. 2017, 23, 231–243. [Google Scholar] [CrossRef]
- Göritz, A.; Wipf, S.T.; Drost, M.; Lisker, M.; Wipf, C.; Wietstruck, M.; Kaynak, M. Monolithic Integration of a Wafer-Level Thin-Film Encapsulated mm-Wave RF-MEMS Switch in BEOL of a 130-nm SiGe BiCMOS Technology. IEEE Trans. Compon. Packag. Manuf. Technol. 2022, 12, 921–932. [Google Scholar] [CrossRef]
- Zhang, W.M.; Yan, H.; Peng, Z.K.; Meng, G. Electrostatic pull-in instability in MEMS/NEMS: A review. Sens. Actuator A-Phys. 2014, 214, 187–218. [Google Scholar] [CrossRef]
- Liao, M.Y.; Koide, Y. Carbon-Based Materials: Growth, Properties, MEMS/NEMS Technologies, and MEM/NEM Switches. Crit. Rev. Solid State Mat. Sci. 2011, 36, 66–101. [Google Scholar] [CrossRef]
- El Mostrah, A.; Muller, A.; Favennec, J.-F.; Potelon, B.; Manchec, A.; Rius, E.; Quendo, C.; Clavet, Y.; Doukhan, F.; Le Nezet, J. An RF-MEMS-Based Digitally Tunable SIW Filter in X-Band for Communication Satellite Applications. Appl. Sci. 2019, 9, 1838. [Google Scholar] [CrossRef]
- Sravani, K.G.; Guha, K.; Rao, K.S. Analysis on Selection of Beam Material for Novel Step Structured RF-MEMS Switch used for Satellite Communication Applications. Trans. Electr. Electron. Mater. 2018, 19, 467–474. [Google Scholar] [CrossRef]
Actuation Mechanism | Actuation Direction | Actuation Voltage | Insertion Loss | Isolation | Ref |
---|---|---|---|---|---|
Thermal/Electrostatic | Vertical | 0.3 V | 0.23 dB @ 2.4 GHz | 38.80 dB @ 2.4 GHz | [28] |
Thermal/Electrostatic | Lateral | 7 V | −0.73 dB @ 6 GHz | −46 dB @ 6 GHz | [101] |
Thermal/Electrostatic | Lateral | 6 V | >−1 dB @ 150 GHz | <−20 dB @ 16 GHz | [41] |
Thermal/Electrostatic | Vertical | 25 V | 1.67 dB @ 5.4 GHz | 33 dB @ 5.4 GHz | [102] |
Thermal/Electrostatic | Lateral | 0.9 V | >−0.1 dB @ 40 GHz | −20 dB @ 100 GHz | [103] |
Thermal/Electrostatic | Lateral | 0.16 V | <1.2 dB @ 40 GHz | −60 dB @ 35 GHz | [42] |
Thermal/Electrostatic | Lateral | 0.07 V | −0.27 dB @ 10 GHz | −40 dB @ 10 GHz | [99] |
Thermal/Electrostatic | Lateral | 0.07 V | >−0.5 dB @ 40 GHz | <−30 dB @ 40 GHz | [104] |
Electromagnetic/Electrostatic | Vertical | 3.7 V | −0.37 dB @ 20 GHz | −34 dB @ 20 GHz | [105] |
Electromagnetic/Electrostatic | Vertical | 4.3 V | −0.52 dB @ 20 GHz | −36 dB @ 20 GHz | [27] |
Electromagnetic/Electrostatic | Vertical | 15 V | 0.06 dB @ 14 GHz | 50 dB @ 14GHz | [39] |
Piezoelectric/Electrostatic | Vertical | 5 V | −2 dB @ 20 GHz | −12 dB @ 20 GHz | [106] |
Piezoelectric/Electrostatic | Vertical | 5 V | <0.5 dB @ 6 GHz | >30 dB @ 6 GHz | [33] |
Material | Insertion Loss (dB) | Isolation (dB) | Ref | ||
---|---|---|---|---|---|
Si3N4 | 7.5 | −0.90 dB @ 40GHz | −23.7 dB @ 40GHz | 22.6 | [147] |
HfO2 | 25 | −0.20 dB @ 20 GHz | −14 dB @ 20 GHz | 19.66 | [149] |
AIN | 9.8 | −0.68 dB @ 40 GHz | −35.8 dB @ 40 GHz | 32.4 | [147] |
Ta2O5 | 32 | <0.80 dB @ 30 GHz | −40 dB @ 30 GHz | 19 | [150] |
STO | 120 | 0.08 dB @ 10 GHz | 42 dB @ 5 GHz | 600 | [151] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, B.; Lu, C.; Xiang, Y.; Li, F.; Song, M. Comprehensive Review of RF MEMS Switches in Satellite Communications. Sensors 2024, 24, 3135. https://doi.org/10.3390/s24103135
Shao B, Lu C, Xiang Y, Li F, Song M. Comprehensive Review of RF MEMS Switches in Satellite Communications. Sensors. 2024; 24(10):3135. https://doi.org/10.3390/s24103135
Chicago/Turabian StyleShao, Bingqian, Chengjian Lu, Yinjie Xiang, Feixiong Li, and Mingxin Song. 2024. "Comprehensive Review of RF MEMS Switches in Satellite Communications" Sensors 24, no. 10: 3135. https://doi.org/10.3390/s24103135
APA StyleShao, B., Lu, C., Xiang, Y., Li, F., & Song, M. (2024). Comprehensive Review of RF MEMS Switches in Satellite Communications. Sensors, 24(10), 3135. https://doi.org/10.3390/s24103135