Advanced Patch-Based Affine Motion Estimation for Dynamic Point Cloud Geometry Compression
Abstract
:1. Introduction
- We design a forward-backward jointing ME strategy incorporating forward motion tracking and backward motion refinement. Forward motion tracking is conducted to generate better motion-compensated frames for improved inter-geometry references before the backward ME process. Results demonstrate that the proposed scheme notably improves the ME accuracy and coding performance.
- We propose a motion-assisted patch generation scheme for the flexible motion representation of point clouds. Motion priors from previously decoded frames are extracted to guide deformable patch generation. Our irregular patch representation can better depict the varying local motions in point clouds.
- We introduce an affine motion model to replace the traditional translational model to improve the ME accuracy for dynamic point clouds. The proposed affine motion model incorporates more DOFs, allowing for finer motion representation, thereby improving the precision of motion-compensated predictions and optimizing point cloud compression efficiency.
2. Related Work
2.1. Dynamic Point Cloud Compression
2.2. Point Cloud Motion Estimation
3. Our Approach
3.1. Overview of the Proposed Framework
3.2. Point Cloud Inter-Geometry Motion Analysis
3.3. Point Cloud Deformable Patch Generation
3.3.1. A Joint Similarity Metric for Patch Generation
3.3.2. Optimization-Based Patch Generation
Algorithm 1 Proposed Patch Generation Algorithm |
Input: Point cloud with m points, desired number of point cloud patches k. Output: Generated point cloud patches C with centroids . |
1: Initialize patch centroids using the k-means++ method. |
2: , . |
3: repeat |
4: for do |
5: , . |
6: for do |
7: Compute the joint error between the point and the patch |
centroid using Equation (6). |
8: if or then |
9: . |
10: if then |
11: , . |
12: end if |
13: end if |
14: end for |
15: end for |
16: for do |
17: Select points belonging to the point cloud patch where . |
18: Update the patch centroid with selected points using Equation (8). |
19: end for |
20: . |
21: until or |
22: return C and . |
3.4. Forward–Backward Jointing Motion Estimation
4. Experimental Results
4.1. Simulation Setup
4.2. Compression Performance Evaluation
4.3. Compression Complexity Evaluation
4.4. Ablation Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yue, Y.; Li, X.; Peng, Y. A 3D Point Cloud Classification Method Based on Adaptive Graph Convolution and Global Attention. Sensors 2024, 24, 617. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zeng, S.; Liang, T. Part2Point: A Part-Oriented Point Cloud Reconstruction Framework. Sensors 2024, 24, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Tian, J.; Zhang, Y.; Fang, Z. Variable Rate Point Cloud Geometry Compression Method. Sensors 2023, 23, 5474. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ding, D.; Li, Z.; Feng, X.; Cao, C.; Ma, Z. Sparse Tensor-Based Multiscale Representation for Point Cloud Geometry Compression. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 9055–9071. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Yuan, H.; Wang, L.; Wang, T. Rate-distortion optimized quantization for geometry-based point cloud compression. J. Electron. Imaging 2023, 32, 013047. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, T.; Ding, D.; Ma, Z. YOGA: Yet Another Geometry-based Point Cloud Compressor. In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canada, 29 October–3 November 2023; ACM: New York, NY, USA, 2023; pp. 9070–9081. [Google Scholar]
- Do, T.T.; Chou, P.A.; Cheung, G. Volumetric Attribute Compression for 3D Point Clouds Using Feedforward Network with Geometric Attention. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; IEEE: New York, NY, USA, 2023; pp. 1–5. [Google Scholar]
- Wang, J.; Ding, D.; Ma, Z. Lossless Point Cloud Attribute Compression Using Cross-scale, Cross-group, and Cross-color Prediction. In Proceedings of the 2023 Data Compression Conference (DCC), Snowbird, UT, USA, 21–24 March 2023; IEEE: New York, NY, USA, 2023; pp. 228–237. [Google Scholar]
- Zhang, Q.; Shao, Y.; Li, G. Point clouds attribute compression using data-adaptive intra prediction. In Proceedings of the 2018 IEEE Visual Communications and Image Processing (VCIP), Taichung, Taiwan, 9–12 December 2018; IEEE: New York, NY, USA, 2018; pp. 1–4. [Google Scholar]
- Shao, Y.; Zhang, Z.; Li, Z.; Fan, K.; Li, G. Attribute compression of 3D point clouds using Laplacian sparsity optimized graph transform. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; IEEE: New York, NY, USA, 2017; pp. 1–4. [Google Scholar]
- Zhang, J.; Chen, T.; Ding, D.; Ma, Z. G-PCC++: Enhanced Geometry-based Point Cloud Compression. In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canada, 29 October–3 November 2023; ACM: New York, NY, USA, 2023; pp. 1352–1363. [Google Scholar]
- Nguyen, D.T.; Kaup, A. Lossless Point Cloud Geometry and Attribute Compression Using a Learned Conditional Probability Model. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 4337–4348. [Google Scholar] [CrossRef]
- Wang, J.; Ding, D.; Li, Z.; Ma, Z. Multiscale point cloud geometry compression. In Proceedings of the 2021 Data Compression Conference (DCC), Snowbird, UT, USA, 23–26 March 2021; IEEE: New York, NY, USA, 2021; pp. 73–82. [Google Scholar]
- Lu, F.; Chen, G.; Li, Z.; Zhang, L.; Liu, Y.; Qu, S.; Knoll, A. Monet: Motion-based point cloud prediction network. IEEE Trans. Intell. Transp. Syst. 2021, 23, 13794–13804. [Google Scholar] [CrossRef]
- Hong, H.; Pavez, E.; Ortega, A.; Watanabe, R.; Nonaka, K. Fractional motion estimation for point cloud compression. In Proceedings of the 2022 Data Compression Conference (DCC), Snowbird, UT, USA, 22–25 March 2022; IEEE: New York, NY, USA, 2022; pp. 369–378. [Google Scholar]
- Souto, A.L.; De Queiroz, R.L.; Dorea, C. Motion-Compensated Predictive RAHT for Dynamic Point Clouds. IEEE Trans. Image Process. 2023, 23, 2428–2437. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Li, G.; Zhang, Q.; Gao, W.; Liu, S. Nonrigid Registration-Based Progressive Motion Compensation for Point Cloud Geometry Compression. IEEE Trans. Geosci. Remote. Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Kim, J.; Im, J.; Rhyu, S.; Kim, K. 3D motion estimation and compensation method for video-based point cloud compression. IEEE Access 2020, 8, 83538–83547. [Google Scholar] [CrossRef]
- Dorea, C.; De Queiroz, R.L. Block-based motion estimation speedup for dynamic voxelized point clouds. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; IEEE: New York, NY, USA, 2018; pp. 2964–2968. [Google Scholar]
- Lasserre, S. Exploratory Model for Inter-Prediction in G-PCC; ISO/IEC JTC2/SC29/WG11 MPEG Output Document N18096; ISO: Geneva, Switzerland, 2018; pp. 1–10. [Google Scholar]
- Lasserre, S.; Flynn, D. [PCC] An Exploratory Model for Inter Geometry-Based PCC; ISO/IEC JTC2/SC29/WG11 MPEG Input Document m44754; ISO: Geneva, Switzerland, 2018; pp. 1–2. [Google Scholar]
- Garcia, D.C.; Fonseca, T.A.; Ferreira, R.U.; de Queiroz, R.L. Geometry coding for dynamic voxelized point clouds using octrees and multiple contexts. IEEE Trans. Image Process. 2019, 29, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, E.; Peixoto, E.; Medeiros, E. Silhouette 4D With Context Selection: Lossless Geometry Compression of Dynamic Point Clouds. IEEE Signal Process. Lett. 2021, 28, 1660–1664. [Google Scholar] [CrossRef]
- Mekuria, R.; Blom, K.; Cesar, P. Design, implementation, and evaluation of a point cloud codec for tele-immersive video. IEEE Trans. Circuits Syst. Video Technol. 2016, 27, 828–842. [Google Scholar] [CrossRef]
- Kammerl, J.; Blodow, N.; Rusu, R.B.; Gedikli, S.; Beetz, M.; Steinbach, E. Real-time compression of point cloud streams. In Proceedings of the IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 778–785. [Google Scholar]
- Milani, S.; Polo, E.; Limuti, S. A transform coding strategy for dynamic point clouds. IEEE Trans. Image Process. 2020, 29, 8213–8225. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.; Tulvan, C.; Preda, M.; Zaharia, T. Skeleton-based motion estimation for Point Cloud Compression. In Proceedings of the IEEE 22nd International Workshop on Multimedia Signal Processing, Tampere, Finland, 21–24 September 2020; IEEE: New York, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Thanou, D.; Chou, P.A.; Frossard, P. Graph-based compression of dynamic 3D point cloud sequences. IEEE Trans. Image Process. 2016, 25, 1765–1778. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Gonçalves, M.; Corrêa, G.; Porto, M. Block-based inter-frame prediction for dynamic point cloud compression. In Proceedings of the IEEE International Conference on Image Processing, Anchorage, AK, USA, 19–22 September 2021; IEEE: New York, NY, USA, 2021; pp. 3388–3392. [Google Scholar]
- Kim, J.K.; Jang, Y.W.; Lee, S.; Hwang, E.S.; Seo, Y.H. Temporal Estimation of Non-Rigid Dynamic Human Point Cloud Sequence Using 3D Skeleton-Based Deformation for Compression. Sensors 2023, 23, 7163. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Shao, Y.; Li, G.; Gao, W.; Liu, S. A Fast Motion Estimation Method With Hamming Distance for LiDAR Point Cloud Compression. In Proceedings of the 2022 IEEE International Conference on Visual Communications and Image Processing (VCIP), Suzhou, China, 13–16 December 2022; IEEE: New York, NY, USA, 2022; pp. 1–5. [Google Scholar]
- Arthur, D.; Vassilvitskii, S. k-means++: The advantages of careful seeding. In Proceedings of the Soda, New Orleans, LA, USA, 7–9 January 2007; Volume 7, pp. 1027–1035. [Google Scholar]
- Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Proceedings of the Sensor Fusion IV: Control Paradigms and Data Structures, Boston, MA, USA, 14–15 November 1991; SPIE: Bellingham, WA, USA, 1992; Volume 1611, pp. 586–606. [Google Scholar]
- MPEG. Common Test Conditions for G-PCC; ISO/IEC JTC2/SC29/WG7 MPEG Output Document N00650; ISO: Geneva, Switzerland, 2023. [Google Scholar]
- Loop, C.; Cai, Q.; Escolano, S.O.; Chou, P.A. Microsoft Voxelized Upper Bodies—A Voxelized Point Cloud Dataset; ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) Input Document m38673/M72012; ISO: Geneva, Switzerland, 2016; pp. 1–6. [Google Scholar]
Category | Sequence | Geometry Precision | Test Frame Range | Total Point Number |
---|---|---|---|---|
MPEG | Longdress | 10 | 1051∼1082 | 26,128,187 |
Loot | 10 | 1000∼1031 | 25,741,340 | |
Redandblack | 10 | 1450∼1481 | 23,392,394 | |
Soldier | 10 | 536∼567 | 35,008,852 | |
JPEG | Andrew | 9 | 0∼31 | 9,314,433 |
David | 9 | 0∼31 | 10,612,744 | |
Phil | 9 | 0∼31 | 11,532,439 | |
Ricardo | 9 | 0∼31 | 7,047,590 | |
Sarah | 9 | 0∼31 | 9,984,193 |
Category | Sequence | Geometry Bitrate (bpp) | Geometry Bitrate Gain of Ours | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Ours | interEM w/ME | interEM w/o ME | Nonrigid ME | P(Full) | interEM w/ME | interEM w/o ME | Nonrigid ME | P(Full) | ||
MPEG | Longdress | 1.0217 | 1.1144 | 1.1272 | 1.0456 | 1.1163 | 8.32% | 9.36% | 2.28% | 8.47% |
Loot | 0.8555 | 0.9065 | 1.0118 | 0.9049 | 0.9971 | 5.62% | 15.45% | 5.46% | 14.20% | |
Redandblack | 1.0703 | 1.1307 | 1.1649 | 1.0854 | 1.2059 | 5.34% | 8.12% | 1.39% | 11.24% | |
Soldier | 0.7980 | 0.8365 | 0.8411 | 0.8106 | 0.8333 | 4.60% | 5.12% | 1.55% | 4.23% | |
JPEG | Andrew | 1.0594 | 1.1328 | 1.1161 | 1.0681 | 1.3738 | 6.48% | 5.08% | 0.81% | 22.88% |
David | 1.0572 | 1.1277 | 1.1195 | 1.0701 | 1.3471 | 6.25% | 5.57% | 1.21% | 21.52% | |
Phil | 1.1333 | 1.2119 | 1.2076 | 1.1484 | 1.4359 | 6.48% | 6.15% | 1.31% | 21.07% | |
Ricardo | 0.9771 | 1.0514 | 1.0372 | 0.9868 | 1.2740 | 7.07% | 5.79% | 0.98% | 23.30% | |
Sarah | 1.0392 | 1.1098 | 1.0975 | 1.0488 | 1.3359 | 6.36% | 5.31% | 0.92% | 22.21% | |
Average Results | 1.0013 | 1.0691 | 1.0803 | 1.0187 | 1.2133 | 6.28% | 7.33% | 1.77% | 16.57% |
Category | Sequence | Coding Metric | Frame 1 to 2 | Frame 1 to 5 | Frame 1 to 10 | Frame 1 to 15 | Frame 1 to 30 |
---|---|---|---|---|---|---|---|
MPEG | Longdress | Bitrate (bpp) | 1.01 | 1.03 | 1.04 | 1.05 | 1.08 |
PSNR (dB) | 64.13 | 61.65 | 65.64 | 64.78 | 64.33 | ||
JPEG | Phil | Bitrate (bpp) | 1.14 | 1.14 | 1.18 | 1.13 | 1.10 |
PSNR (dB) | 56.89 | 52.17 | 57.35 | 55.76 | 56.34 |
Category | Sequence | Geometry Coding Time (s) | Time Reduction of Ours | |||||
---|---|---|---|---|---|---|---|---|
Ours | G-PCC | Nonrigid | P(Full) | G-PCC | Nonrigid | P(Full) | ||
interEM | ME | interEM | ME | |||||
MPEG | Longdress | 102.03 | 76.20 | 238.95 | – | −33.89% | 99.83% | – |
Loot | 82.17 | 68.02 | 128.25 | 37.40 | −20.81% | 99.70% | −242.91% | |
Redandblack | 79.58 | 66.64 | 212.17 | 36.99 | −19.41% | 99.84% | −473.59% | |
Soldier | 54.33 | 46.98 | 56.28 | 58.08 | −15.63% | 99.03% | 3.10% | |
JPEG | Andrew | 19.86 | 16.30 | 42.22 | – | −21.86% | 99.67% | – |
David | 24.27 | 20.13 | 36.22 | – | −20.57% | 99.57% | – | |
Phil | 36.09 | 30.67 | 80.55 | 14.73 | −17.68% | 99.79% | −446.82% | |
Ricardo | 11.44 | 10.28 | 30.88 | – | −11.24% | 99.70% | – | |
Sarah | 21.30 | 19.58 | 56.11 | – | −8.78% | 99.72% | – | |
Average Results | 47.90 | 39.42 | 97.96 | – | −18.88% | 99.65% | – |
Category | Sequence | Geometry Coding Time (s) | Time Reduction of Ours | |||
---|---|---|---|---|---|---|
Ours | G-PCC | Nonrigid | G-PCC | Nonrigid | ||
interEM | ME | interEM | ME | |||
MPEG | Longdress | 2533.64 | 1983.41 | 7837.63 | −27.74% | 99.85% |
Loot | 2308.88 | 1757.34 | 3504.73 | −31.38% | 99.65% | |
Redandblack | 2318.56 | 1777.13 | 7148.50 | −30.47% | 99.85% | |
Soldier | 1477.08 | 1263.98 | 1589.06 | −16.86% | 98.95% | |
JPEG | Andrew | 604.49 | 474.00 | 947.40 | −27.53% | 99.56% |
David | 782.61 | 585.41 | 1068.38 | −33.69% | 99.57% | |
Phil | 978.38 | 777.80 | 3441.86 | −25.79% | 99.85% | |
Ricardo | 366.92 | 318.10 | 1412.54 | −15.35% | 99.78% | |
Sarah | 591.27 | 523.39 | 1701.01 | −12.97% | 99.75% | |
Average Results | 1329.09 | 1051.17 | 3183.46 | −24.64% | 99.64% |
Category | Sequence | Geometry Bitrate (bpp) | Geometry Bitrate Gain of Ours | |||||
---|---|---|---|---|---|---|---|---|
Ours | w/o | w/o | w/o | w/o | w/o | w/o | ||
Joint ME | Patch | Affine | Joint ME | Patch | Affine | |||
MPEG | Longdress | 1.0217 | 1.0775 | 1.0610 | 1.0736 | 5.18% | 3.70% | 4.83% |
Loot | 0.8555 | 0.8830 | 0.8651 | 0.8783 | 3.11% | 1.11% | 2.59% | |
Redandblack | 1.0703 | 1.0996 | 1.0898 | 1.0959 | 2.66% | 1.79% | 2.33% | |
Soldier | 0.7980 | 0.8129 | 0.8000 | 0.8084 | 1.84% | 0.25% | 1.28% | |
JPEG | Andrew | 1.0594 | 1.0809 | 1.0818 | 1.0835 | 1.99% | 2.07% | 2.22% |
David | 1.0572 | 1.0825 | 1.0799 | 1.0829 | 2.34% | 2.11% | 2.38% | |
Phil | 1.1333 | 1.1668 | 1.1616 | 1.1655 | 2.87% | 2.43% | 2.76% | |
Ricardo | 0.9771 | 0.9941 | 0.9972 | 0.9983 | 1.71% | 2.02% | 2.12% | |
Sarah | 1.0392 | 1.0615 | 1.0602 | 1.0626 | 2.10% | 1.98% | 2.21% | |
Average Results | 1.0013 | 1.0288 | 1.0218 | 1.0277 | 2.64% | 1.94% | 2.53% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Gao, W.; Liu, S.; Li, G. Advanced Patch-Based Affine Motion Estimation for Dynamic Point Cloud Geometry Compression. Sensors 2024, 24, 3142. https://doi.org/10.3390/s24103142
Shao Y, Gao W, Liu S, Li G. Advanced Patch-Based Affine Motion Estimation for Dynamic Point Cloud Geometry Compression. Sensors. 2024; 24(10):3142. https://doi.org/10.3390/s24103142
Chicago/Turabian StyleShao, Yiting, Wei Gao, Shan Liu, and Ge Li. 2024. "Advanced Patch-Based Affine Motion Estimation for Dynamic Point Cloud Geometry Compression" Sensors 24, no. 10: 3142. https://doi.org/10.3390/s24103142
APA StyleShao, Y., Gao, W., Liu, S., & Li, G. (2024). Advanced Patch-Based Affine Motion Estimation for Dynamic Point Cloud Geometry Compression. Sensors, 24(10), 3142. https://doi.org/10.3390/s24103142