Exploring the Role of Video Playback Visual Cues in Object Retrieval Tasks
Abstract
:1. Introduction
2. Related Work
2.1. Search Assistance
2.2. First-Person Vision Method
3. User Study 1
4. User Study 2
5. Discussion and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peters, R.E.; Pak, R.; Abowd, G.D.; Fisk, A.D.; Rogers, W.A. Finding Lost Objects: Informing the Design of Ubiquitous Computing Services for the Home. Georgia Tech GVU Technical Report: GIT-GVU. 2004, pp. 1–4. Available online: https://repository.gatech.edu/server/api/core/bitstreams/ee3933f2-73ec-4bc9-be1e-bb83a74f915e/content (accessed on 10 October 2023).
- Yan, G.; Zhang, C.; Wang, J.; Xu, Z.; Liu, J.; Nie, J.; Ying, F.; Yao, C. CamFi: An AI-Driven and Camera-Based System for Assisting Users in Finding Lost Objects in Multi-Person Scenarios. In Proceedings of the CHI EA’22: Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April–5 May 2022. [Google Scholar] [CrossRef]
- Hololens. Available online: https://www.microsoft.com/en-us/hololens (accessed on 4 April 2024).
- Vision Pro. Available online: https://www.apple.com/apple-vision-pro/ (accessed on 4 April 2024).
- Xreal Air. Available online: https://www.xreal.com/air (accessed on 4 April 2024).
- Vuzix Blade. Available online: https://www.vuzix.com/products/vuzix-blade-smart-glasses-upgraded (accessed on 4 April 2024).
- Kerdvibulvech, C. Location-based augmented reality games through immersive experiences. In Proceedings of the International Conference on Human-Computer Interaction, Virtual Event, 24–29 July 2021; pp. 452–461. [Google Scholar]
- Kristensen, J.W.; Schjørring, A.; Mikkelsen, A.; Johansen, D.A.; Knoche, H.O. Of Leaders and Directors: A visual model to describe and analyse persistent visual cues directing to single out-of view targets. In Proceedings of the VRST’21:27th ACM Symposium on Virtual Reality Software and Technology, Osaka, Japan, 8–10 December 2021. [Google Scholar] [CrossRef]
- Chittaro, L.; Burigat, S. 3D Location-Pointing as a Navigation Aid in Virtual Environments. In Proceedings of the AVI’04: Working Conference on Advanced Visual Interfaces, Gallipoli, Italy, 25–28 May 2004; pp. 267–274. [Google Scholar] [CrossRef]
- Baudisch, P.; Rosenholtz, R. Halo: A Technique for Visualizing off-Screen Objects. In Proceedings of the CHI’03: SIGCHI Conference on Human Factors in Computing Systems, Ft. Lauderdale, FL, USA, 5–10 April 2003; pp. 481–488. [Google Scholar] [CrossRef]
- Gustafson, S.; Baudisch, P.; Gutwin, C.; Irani, P. Wedge: Clutter-Free Visualization of off-Screen Locations. In Proceedings of the CHI’08: SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; pp. 787–796. [Google Scholar] [CrossRef]
- Perea, P.; Morand, D.; Nigay, L. Halo3D: A Technique for Visualizing off-Screen Points of Interest in Mobile Augmented Reality. In Proceedings of the IHM’17: 29th Conference on l’Interaction Homme-Machine, Poitiers, France, 29 August–1 September 2017; pp. 43–51. [Google Scholar] [CrossRef]
- Gruenefeld, U.; Ali, A.E.; Boll, S.; Heuten, W. Beyond Halo and Wedge: Visualizing out-of-View Objects on Head-Mounted Virtual and Augmented Reality Devices. In Proceedings of the MobileHCI’18: 20th International Conference on Human-Computer Interaction with Mobile Devices and Services, Barcelona, Spain, 3–6 September 2018. [Google Scholar] [CrossRef]
- Gruenefeld, U.; Lange, D.; Hammer, L.; Boll, S.; Heuten, W. FlyingARrow: Pointing Towards Out-of-View Objects on Augmented Reality Devices. In Proceedings of the PerDis’18: 7th ACM International Symposium on Pervasive Displays, Munich, Germany, 6–8 June 2018. [Google Scholar] [CrossRef]
- Oshimi, H.; Perusquía-Hernández, M.; Isoyama, N.; Uchiyama, H.; Kiyokawa, K. LocatAR: An AR Object Search Assistance System for a Shared Space. In Proceedings of the AHs’23: Augmented Humans International Conference 2023, Glasgow, UK, 12–14 March 2023; pp. 66–76. [Google Scholar] [CrossRef]
- Al-Kalbani, M.; Frutos-Pascual, M.; Williams, I. Virtual Object Grasping in Augmented Reality: Drop Shadows for Improved Interaction. In Proceedings of the 2019 11th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games), Vienna, Austria, 4–6 September 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Cockburn, A.; Karlson, A.; Bederson, B.B. A Review of Overview+detail, Zooming, and Focus+context Interfaces. ACM Comput. Surv. 2009, 41, 2. [Google Scholar] [CrossRef]
- Bork, F.; Schnelzer, C.; Eck, U.; Navab, N. Towards Efficient Visual Guidance in Limited Field-of-View Head-Mounted Displays. IEEE Trans. Vis. Comput. Graph. 2018, 24, 2983–2992. [Google Scholar] [CrossRef] [PubMed]
- Gruenefeld, U.; Ennenga, D.; Ali, A.E.; Heuten, W.; Boll, S. EyeSee360: Designing a Visualization Technique for out-of-View Objects in Head-Mounted Augmented Reality. In Proceedings of the SUI’17: 5th Symposium on Spatial User Interaction, Brighton, UK, 16–17 October 2017; pp. 109–118. [Google Scholar] [CrossRef]
- Pederson, T. Magic Touch: A Simple Object Location Tracking System Enabling the Development of Physical-Virtual Artefacts in Office Environments. Pers. Ubiquitous Comput. 2001, 5, 54–57. [Google Scholar] [CrossRef]
- Kientz, J.A.; Patel, S.N.; Tyebkhan, A.Z.; Gane, B.; Wiley, J.; Abowd, G.D. Where’s my stuff? Design and evaluation of a mobile system for locating lost items for the visually impaired. In Proceedings of the 8th international ACM SIGACCESS Conference on Computers and Accessibility, Portland, OR, USA, 23–25 October 2006; pp. 103–110. [Google Scholar]
- Elsayeh, M.; Haroon, M.; Tawfik, B.; Fahmy, A.S. RFID-based indoors localization of tag-less objects. In Proceedings of the 2010 5th Cairo International Biomedical Engineering Conference, Cairo, Egypt, 16–18 December 2010; pp. 61–65. [Google Scholar] [CrossRef]
- Shen, J.; Molisch, A.F.; Salmi, J. Accurate Passive Location Estimation Using TOA Measurements. IEEE Trans. Wirel. Commun. 2012, 11, 2182–2192. [Google Scholar] [CrossRef]
- Schwarz, D.; Schwarz, M.; Stückler, J.; Behnke, S. Cosero, Find My Keys! Object Localization and Retrieval Using Bluetooth Low Energy Tags. In RoboCup 2014: Robot World Cup XVIII; Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K., Eds.; Springer: Cham, Switzerland, 2015; pp. 195–206. [Google Scholar]
- Fiala, M. ARTag, a fiducial marker system using digital techniques. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 590–596. [Google Scholar] [CrossRef]
- Grandi, J.G.; Berndt, I.; Debarba, H.G.; Nedel, L.; Maciel, A. Collaborative manipulation of 3D virtual objects in augmented reality scenarios using mobile devices. In Proceedings of the 2017 IEEE Symposium on 3D User Interfaces (3DUI), Los Angeles, CA, USA, 18–19 March 2017; pp. 264–265. [Google Scholar] [CrossRef]
- Li, F.M.; Chen, D.L.; Fan, M.; Truong, K.N. FMT: A Wearable Camera-Based Object Tracking Memory Aid for Older Adults. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 95. [Google Scholar] [CrossRef]
- Xie, D.; Yan, T.; Ganesan, D.; Hanson, A. Design and Implementation of a Dual-Camera Wireless Sensor Network for Object Retrieval. In Proceedings of the IPSN’08: 7th International Conference on Information Processing in Sensor Networks, St. Louis, MO, USA, 22–24 April 2008; pp. 469–480. [Google Scholar] [CrossRef]
- Muhtadin; Billy; Yuniarno, E.M.; Fadlil, J.; Saputra, M.A.; Purnama, I.K.E.; Purnomo, M.H. Robot Service for Elderly to Find Misplaced Items: A Resource Efficient Implementation on Low-Computational Device. In Proceedings of the 2020 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), Bali, Indonesia, 7–8 July 2020; pp. 28–34. [Google Scholar] [CrossRef]
- Li, P.; Qin, T.; Hu, B.; Zhu, F.; Shen, S. Monocular Visual-Inertial State Estimation for Mobile Augmented Reality. In Proceedings of the 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Nantes, France, 9–13 October 2017; pp. 11–21. [Google Scholar] [CrossRef]
- Amirjavid, F.; Spachos, P.; Plataniotis, K.N. 3-D Object Localization in Smart Homes: A Distributed Sensor and Video Mining Approach. IEEE Syst. J. 2018, 12, 1307–1316. [Google Scholar] [CrossRef]
- Tavakolizadeh, F.; Gu, J.; Saket, B. Traceband: Locating Missing Items by Visual Remembrance. In Proceedings of the UIST ’14 Adjunct: Adjunct Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, Honolulu, HI, USA, 5–8 October 2014; pp. 109–110. [CrossRef]
- Funk, M.; Boldt, R.; Pfleging, B.; Pfeiffer, M.; Henze, N.; Schmidt, A. Representing Indoor Location of Objects on Wearable Computers with Head-Mounted Displays. In Proceedings of the AH’14: 5th Augmented Human International Conference, Kobe, Japan, 7–8 March 2014. [Google Scholar] [CrossRef]
- Reyes, C.; Mohedano, E.; McGuinness, K.; O’Connor, N.E.; Giro-i Nieto, X. Where is My Phone? Personal Object Retrieval from Egocentric Images. In Proceedings of the LTA’16: First Workshop on Lifelogging Tools and Applications, Amsterdam, The Netherlands, 16 October 2016; pp. 55–62. [Google Scholar] [CrossRef]
- Yagi, T.; Nishiyasu, T.; Kawasaki, K.; Matsuki, M.; Sato, Y. GO-Finder: A Registration-Free Wearable System for Assisting Users in Finding Lost Objects via Hand-Held Object Discovery. In Proceedings of the IUI’21: 26th International Conference on Intelligent User Interfaces, College Station, TX, USA, 14–17 April 2021; pp. 139–149. [Google Scholar] [CrossRef]
- Ribeiro, R.; Trifan, A.; Neves, A.J.R. Lifelog Retrieval From Daily Digital Data: Narrative Review. JMIR Mhealth Uhealth 2022, 10, e30517. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.J.; Wang, T.Y. Comparing picture and video prompting in autonomous indoor wayfinding for individuals with cognitive impairments. Pers. Ubiquitous Comput. 2010, 14, 737–747. [Google Scholar] [CrossRef]
- Xu, Q.; Li, L.; Lim, J.H.; Tan, C.Y.C.; Mukawa, M.; Wang, G. A Wearable Virtual Guide for Context-Aware Cognitive Indoor Navigation. In Proceedings of the MobileHCI’14: 16th International Conference on Human-Computer Interaction with Mobile Devices & Services, Toronto, ON, Canada, 23–26 September 2014; pp. 111–120. [Google Scholar] [CrossRef]
- Roy, Q.; Perrault, S.T.; Zhao, S.; Davis, R.C.; Pattena Vaniyar, A.; Vechev, V.; Lee, Y.; Misra, A. Follow-My-Lead: Intuitive Indoor Path Creation and Navigation Using Interactive Videos. In Proceedings of the CHI’17: 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 5703–5715. [Google Scholar] [CrossRef]
- Spriggs, E.H.; De La Torre, F.; Hebert, M. Temporal segmentation and activity classification from first-person sensing. In Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Miami, FL, USA, 20–25 June 2009; pp. 17–24. [Google Scholar] [CrossRef]
- Kitani, K.M.; Okabe, T.; Sato, Y.; Sugimoto, A. Fast unsupervised ego-action learning for first-person sports videos. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 3241–3248. [Google Scholar] [CrossRef]
- Wang, M.; Luo, C.; Ni, B.; Yuan, J.; Wang, J.; Yan, S. First-Person Daily Activity Recognition With Manipulated Object Proposals and Non-Linear Feature Fusion. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 2946–2955. [Google Scholar] [CrossRef]
- Kerdvibulvech, C. A Review of Augmented Reality-Based Human-Computer Interaction Applications of Gesture-Based Interaction. In Proceedings of the HCI International 2019—Late Breaking Papers, Oralndo, FL, USA, 26–31 July 2019; Stephanidis, C., Ed.; Springer: Cham, Switzerland, 2019; pp. 233–242. [Google Scholar]
- Feichtenhofer, C.; Fan, H.; Malik, J.; He, K. SlowFast Networks for Video Recognition. arXiv 2019, arXiv:1812.03982. [Google Scholar]
- Lee, C.; Bonebrake, S.; Hollerer, T.; Bowman, D.A. A replication study testing the validity of AR simulation in VR for controlled experiments. In Proceedings of the 2009 8th IEEE International Symposium on Mixed and Augmented Reality, Orlando, FL, USA, 19–22 October 2009; pp. 203–204. [Google Scholar] [CrossRef]
- Ragan, E.; Wilkes, C.; Bowman, D.A.; Hollerer, T. Simulation of Augmented Reality Systems in Purely Virtual Environments. In Proceedings of the 2009 IEEE Virtual Reality Conference, Lafayette, LA, USA, 14–18 March 2009; pp. 287–288. [Google Scholar] [CrossRef]
- Lee, C.; Gauglitz, S.; Höllerer, T.; Bowman, D.A. Examining the equivalence of simulated and real AR on a visual following and identification task. In Proceedings of the 2012 IEEE Virtual Reality Workshops (VRW), Costa Mesa, CA, USA, 4–8 March 2012; pp. 77–78. [Google Scholar] [CrossRef]
- Lahoud, F.; Susstrunk, S. Ar in VR: Simulating Infrared Augmented Vision. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 3893–3897. [Google Scholar] [CrossRef]
- Lee, C.; Rincon, G.A.; Meyer, G.; Höllerer, T.; Bowman, D.A. The Effects of Visual Realism on Search Tasks in Mixed Reality Simulation. IEEE Trans. Vis. Comput. Graph. 2013, 19, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, F.; Furnari, A.; Livatino, S.; Farinella, G.M. The MECCANO Dataset: Understanding Human-Object Interactions from Egocentric Videos in an Industrial-Like Domain. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 5–9 January 2021; pp. 1569–1578. [Google Scholar]
- Murphy, D.H.; Hoover, K.M.; Agadzhanyan, K.; Kuehn, J.C.; Castel, A.D. Learning in double time: The effect of lecture video speed on immediate and delayed comprehension. Appl. Cogn. Psychol. 2021, 36, 69–82. [Google Scholar] [CrossRef]
- Mo, C.Y.; Wang, C.; Dai, J.; Jin, P. Video Playback Speed Influence on Learning Effect From the Perspective of Personalized Adaptive Learning: A Study Based on Cognitive Load Theory. Front. Psychol. 2022, 13, 839982. [Google Scholar] [CrossRef] [PubMed]
- Hart, S.G. NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, San Francisco, CA, USA, 16–20 October 2006; Sage Publications: Los Angeles, CA, USA, 2006; Volume 50, pp. 904–908. [Google Scholar]
- de Muñoz, J.H.O.; Letouze, P. Some considerations on the principles of the Cognitive Theory of Multimedia Learning for instructional video design for the elderly. Res. Soc. Dev. 2022, 11, e499111032333. [Google Scholar] [CrossRef]
Playback Speed | 1 OG | 2 DA | 3 OR | Post-Hoc: Wilcoxon |
---|---|---|---|---|
1× | 24.743 s (6.1 s) | 17.782 s (4.5 s) | 28.199 s (17.0 s) | 1–2, 2–3 |
1.5× | 21.424 s (6.3 s) | 17.212 s (4.4 s) | 25.622 s (9.2 s) | 1–2, 2–3, 1–3 |
2× | 22.860 s (8.3 s) | 21.745 s (7.8 s) | 27.987 s (7.6 s) | NA |
Playback Speed | 1 OG | 2 DA | 3 OR | Post-Hoc: Wilcoxon |
---|---|---|---|---|
1× | 0.569 (0.5) | 0.298 (0.3) | 2.681 (1.9) | 2–3, 1–3 |
1.5× | 0.680 (0.6) | 0.930 (0.6) | 4.111 (1.8) | 2–3, 1–3 |
2× | 0.930 (0.9) | 1.763 (1.3) | 5.000 (3.2) | 2–3, 1–3 |
Subjective Rating | 1 OG | 2 DA | 3 OR | Friedman Test | Post-Hoc: Wilcoxon |
Workload | 7.2 (2.6) | 6.7 (2.4) | 11.7 (3.6) | = , | 1–3, 2–3 |
Sufficiency | 5.5 (1.4) | 4.9 (1.1) | 3.2 (1.4) | , | 1–2, 1–3, 2–3 |
Intuition | 5.1 (1.4) | 5.1 (1.1) | 3.2 (1.7) | , | 1–3, 2–3 |
Fatigue | 4.6 (1.4) | 3.3 (1.1) | 4.4 (1.6) | , | 1–2, 2–3 |
Preference | 4.3 (1.3) | 5.3 (1.1) | 3.3 (1.5) | , | 1–2, 2–3, 1–3 |
Subjective Rating | 1 1× | 2 1.5× | 3 2× | Friedman Test | Post-Hoc: Wilcoxon |
Workload | 6.0 (2.6) | 6.2 (2.1) | 10.6 (3.3) | = , | 1–3, 2–3 |
Sufficiency | 5.6 (1.4) | 5.2 (1.0) | 3.6 (1.4) | = , | 1–2, 1–3, 2-3 |
Intuition | 5.2 (1.1) | 5.0 (1.1) | 3.3 (1.1) | , | 1–3, 2–3 |
Fatigue | 3.4 (1.3) | 3.3 (1.0) | 4.8 (1.3) | = , | 1–3, 2–3 |
Preference | 4.5 (1.1) | 5.0 (1.3) | 3.3 (1.4) | = , | 1–3, 2–3 |
Subjective Rating | 1 LF | 2 Video | 3 Video-LF | Friedman Test | Post-Hoc: Wilcoxon |
---|---|---|---|---|---|
Sufficiency | 3.3 (1.2) | 5.5 (0.9) | 6.4 (0.7) | , | 1–2, 1–3, 2–3 |
Usability | 3.8 (1.7) | 5.2 (1.1) | 5.9 (1.2) | , | 1–2, 1–3, 2–3 |
Fatigue | 4.3 (1.8) | 3.5 (1.1) | 2.6 (1.0) | , | 1–3, 2–3 |
Preference | 3.3 (0.9) | 4.8 (0.6) | 6.2 (0.8) | , | 1–2, 1–3, 2–3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Su, J.; Qin, H.; Tian, Y. Exploring the Role of Video Playback Visual Cues in Object Retrieval Tasks. Sensors 2024, 24, 3147. https://doi.org/10.3390/s24103147
Qin Y, Su J, Qin H, Tian Y. Exploring the Role of Video Playback Visual Cues in Object Retrieval Tasks. Sensors. 2024; 24(10):3147. https://doi.org/10.3390/s24103147
Chicago/Turabian StyleQin, Yechang, Jianchun Su, Haozhao Qin, and Yang Tian. 2024. "Exploring the Role of Video Playback Visual Cues in Object Retrieval Tasks" Sensors 24, no. 10: 3147. https://doi.org/10.3390/s24103147
APA StyleQin, Y., Su, J., Qin, H., & Tian, Y. (2024). Exploring the Role of Video Playback Visual Cues in Object Retrieval Tasks. Sensors, 24(10), 3147. https://doi.org/10.3390/s24103147