ZPD Retrieval Performances of the First Operational Ship-Based Network of GNSS Receivers over the North-West Mediterranean Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ship-Based GNSS Meteorology System Architecture
2.2. Processing Software
2.2.1. Onboard Pre-Processing
- GNSS time and position data acquisition;
- Weather station data acquisition;
- AHRS data ingestion;
- Data publication (on a local HTML server) and storage.
2.2.2. ZPD Retrieval
- We introduced a command line interface for automatic execution inside of the script suitable for near-real-time processing, while the original software was designed for interactive use only trough a GUI (graphic user interface).
- We included the capability to process different types of input files, namely observation and navigation RINEX (obs, nav), orbits, clocks and Earth rotation corrections (sp3, clk, erp), antenna calibration (ant), ocean tidal loading (blq, otl), and tropospheric gridded corrections (grd), regardless of their name or extension.
- The possibility of processing data coming also from the QZSS (Quasi-Zenith Satellite System) constellation.
- We added the capability to perform ocean tide calculation using gridded input data. The software originally used only site-specific input data for the ocean tide model, while the modification allowed the interpolation of data contained in a grid file. The ocean tide gridded model used was the FES2004 [32]. Both the ocean tide grid model and the interpolation procedure were implemented as in the GAMIT-GLOBK 10.71 software [33]. In this way, the ocean tide model can also be applied to moving systems, such as ships in our case.
- The original version of the MG-APP software performed a time interpolation of the satellite clocks corrections to match all the observation epochs. Unfortunately, such interpolation introduces an error that should be computed and corrected, for example, through a stochastic model of satellite clock interpolation errors, as proposed in [34]. In our implementation, satellite clock signals were not interpolated. Instead, the processing involved only the epochs for which satellite clocks corrections were available. This brought benefits especially in the near-real time processing, where the ZPD computation was available every 15 and 5 min using ultra-rapid and rapid orbits, respectively. It was found that considering observation inputs only when the satellite clocks were available led to significant improvement in the final results, even if less output data were produced. On the other hand, when using the final ephemeris available after a few days (from 12 to 19), the frequency of satellite clock correction was 30 s, so very close to the frequency of observations. The use or not of interpolation on the clock correction was consequently not relevant.
2.3. Validation with NWP Data Reanalysis
2.3.1. Merra-2 Reanalysis Data
2.3.2. Comparison Methods
3. Results
Description of ZPD Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, G.A.; Ruedy, R.A.; Miller, R.L.; Lacis, A.A. Attribution of the present-day total greenhouse effect. J. Geophys. Res. 2010, 115, D20106. [Google Scholar] [CrossRef]
- Jacob, D. The role of water vapour in the atmosphere. A short overview from a climate modeller’s point of view. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 523–527. [Google Scholar] [CrossRef]
- Li, Z.L.; Wu, H.; Wang, N.; Qiu, S.; Sobrino, J.A.; Wan, Z.; Yan, G. Land surface emissivity retrieval from satellite data. Int. J. Remote. Sens. 2013, 34, 3084–3127. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water. J. Appl. Meteorol. Climatol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Flores, A.; Ruffini, G.; Rius, A. 4D tropospheric tomography using GPS slant wet delays. Ann. Geophys. 2000, 18, 223–234. [Google Scholar] [CrossRef]
- Antonini, A.; Benedetti, R.; Ortolani, A.; Rovai, L.; Schiavon, G. Water Vapor Probabilistic Retrieval Using GNSS Signals. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1892–1900. [Google Scholar] [CrossRef]
- Bender, M.; Raabe, A. Preconditions to ground-based GPS water vapour tomography. Ann. Geophys. 2007, 25, 1727–1734. [Google Scholar] [CrossRef]
- Shivika, S.; Ramji, D. GNSS ground-based tomography: State-of-the-art and technological challenges. Int. J. Remote Sens. 2023, 44, 5313–5343. [Google Scholar] [CrossRef]
- Vaquero-Martínez, J.; Antón, M. Review on the Role of GNSS Meteorology in Monitoring Water Vapor for Atmospheric Physics. Remote Sens. 2021, 13, 2287. [Google Scholar] [CrossRef]
- Maciuk, K.; Lewińska, P. High-Rate Monitoring of Satellite Clocks Using Two Methods of Averaging Time. Remote Sens. 2019, 11, 2754. [Google Scholar] [CrossRef]
- Gurbuz, G.; Jin, S.; Mekik, C. Effects of ocean tide models on GNSS-estimated ZTD and PWV in Turkey. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, XL-1/W5, 255–258. [Google Scholar] [CrossRef]
- Byun, S.H.; Bar-Sever, Y.E. A new type of troposphere zenith path delay product of the international GNSS service. J. Geod. 2009, 83, 1–7. [Google Scholar] [CrossRef]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Bar-Sever, Y.E.; Kroger, P.M.; Borjesson, J.A. Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J. Geophys. Res. 1998, 103, 5019–5035. [Google Scholar] [CrossRef]
- Glaner, M.; Weber, R. PPP with integer ambiguity resolution for GPS and Galileo using satellite products from different analysis centers. GPS Solut. 2021, 25, 102. [Google Scholar] [CrossRef]
- Glaner, M.F.; Weber, R. An open-source software package for Precise Point Positioning: RaPPPid. GPS Solut. 2023, 27, 174. [Google Scholar] [CrossRef]
- Vázquez-Ontiveros, J.R.; Padilla-Velazco, J.; Gaxiola-Camacho, J.R.; Vázquez-Becerra, G.E. Evaluation and Analysis of the Accuracy of Open-Source Software and Online Services for PPP Processing in Static Mode. Remote Sens. 2023, 15, 2034. [Google Scholar] [CrossRef]
- Aggrey, J.; Bisnath, S. Improving GNSS PPP Convergence: The Case of Atmospheric-Constrained, Multi-GNSS PPP-AR. Sensors 2019, 19, 587. [Google Scholar] [CrossRef] [PubMed]
- Dodson, A.H.; Chen, W.; Penna, N.T.; Baker, H.C. GPS estimation of atmospheric water vapour from a moving platform. J. Atmos. Sol.-Terr. Phys. 2001, 63, 1331–1341. [Google Scholar] [CrossRef]
- Rocken, C.; Johnson, J.; Van Hove, T.; Iwabuchi, T. Atmospheric water vapor and geoid measurements in the open ocean with GPS. Geophys. Res. Lett. 2005, 32, L12813. [Google Scholar] [CrossRef]
- Boniface, K.; Champollion, C.; Chery, J.; Ducrocq, V.; Rocken, C.; Doerflinger, E.; Collard, P. Potential of shipborne GPS atmospheric delay data for prediction of Mediterranean intense weather events. Atmosph. Sci. Lett. 2012, 13, 250–256. [Google Scholar] [CrossRef]
- GNSS meteorology on Moving Platforms: Advances and Limitations in Kinematics Water Vapor Estimations. Available online: https://insidegnss.com/wp-content/uploads/2018/01/0406_Working_PapersIGM.pdf (accessed on 16 November 2023).
- Yoneyama, K.; Masumoto, Y.; Kuroda, Y.; Katsumata, M.; Mizuno, K.; Takayabu, Y.N.; Yoshizaki, M.; Shareef, A.; Fujiyoshi, Y.; McPhaden, M.J.; et al. MISMO field experiment in the equatorial Indian Ocean. Bull. Am. Meteorol. Soc. 2008, 89, 1889–1904. [Google Scholar] [CrossRef]
- Fujita, M.; Kimura, F.; Yoneyama, K.; Yoshizaki, M. Verification of precipitable water vapor estimated from shipborne GPS measurements. Geophys. Res. Lett. 2008, 35, L13803. [Google Scholar] [CrossRef]
- Bosser, P.; Bock, O.; Flamant, C.; Bony, S.; Speich, S. Integrated water vapour content retrievals from ship-borne GNSS receivers during EUREC4A. Earth Syst. Sci. Data 2021, 13, 1499–1517. [Google Scholar] [CrossRef]
- Bosser, P.; Van Baelen, J.; Bousquet, O. Routine Measurement of Water Vapour Using GNSS in the Framework of the Map-Io Project. Atmosphere 2022, 13, 903. [Google Scholar] [CrossRef]
- Wu, Z.; Lu, C.; Zheng, Y.; Liu, Y.; Liu, Y.; Xu, W.; Jin, K.; Tang, Q. Evaluation of Shipborne GNSS Precipitable Water Vapor Over Global Oceans from 2014 to 2018. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Liu, G.; Huang, G.; Xu, Y.; Ta, L.; Jing, C.; Cao, Y.; Wang, Z. Accuracy Evaluation and Analysis of GNSS Tropospheric Delay Inversion from Meteorological Reanalysis Data. Remote Sens. 2022, 14, 3434. [Google Scholar] [CrossRef]
- Antonini, A.; Ortolani, A.; Sonnini, A.; Viti, M.; Fibbi, L.; Cristofori, S.; Montagnani, S. A ship-based network for GNSS-meteorology over the northwestern Mediterranean Sea. In Proceedings of the EGU General Assembly, Online, 4–8 May 2020. [Google Scholar] [CrossRef]
- Xiao, G.; Liu, G.; Ou, J.; Liu, G.; Wang, S.; Guo, A. MG-APP: An open-source software for multi-GNSS precise point positioning and application analysis. GPS Solut. 2020, 24, 66. [Google Scholar] [CrossRef]
- MG_ APP Software. Available online: https://github.com/XiaoGongWei/MG_APP (accessed on 14 September 2023).
- Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn. 2006, 56, 394–415. [Google Scholar] [CrossRef]
- Herring, T.A.; King, R.W.; McClusky, S.C. GAMIT Reference Manual Reference Manual GPS Analysis at MIT; Department of Earth, Atmospheric, and Planetary Sciences Institute of Technology: Cambridge, MA, USA, 2010. [Google Scholar]
- Wang, S.; Yang, F.; Gao, W.; Yan, L.; Ge, Y. A new stochastic model considering satellite clock interpolation errors in precise point positioning. Adv. Space Res. 2018, 61, 1332–1341. [Google Scholar] [CrossRef]
- Panetier, A.; Bosser, P.; Khenchaf, A. Sensitivity of Shipborne GNSS Estimates to Processing Modeling Based on Simulated Dataset. Sensors 2023, 23, 6605. [Google Scholar] [CrossRef]
- Available online: https://ftp.aiub.unibe.ch/CODE_MGEX/CODE (accessed on 14 September 2023).
- Prange, L.; Villiger, A.; Sidorov, D.; Schaer, S.; Beutler, G.; Dach, R.; Jäggi, A. Overview of CODE’s MGEX solution with the focus on Galileo. Adv. Space Res. 2020, 66, 2786–2798. [Google Scholar] [CrossRef]
- Saastamoinen, J. Contributions to the theory of atmospheric refraction. Bull. Geod. 1972, 105, 279–298. [Google Scholar] [CrossRef]
- Boehm, J.; Schuh, H. Vienna mapping functions in VLBI analyzes. Geophys. Res. Lett. 2004, 31, L01603. [Google Scholar] [CrossRef]
- Boehm, J.; Heinkelmann, R.; Schuh, H. Short note: A global model of pressure and temperature for geodetic applications. J. Geod 2007, 81, 679–683. [Google Scholar] [CrossRef]
- Global Modeling and Assimilation Office (GMAO). MERRA-2 inst6_3d_ana_Np: 3d,6-Hourly, Instantaneous, Pressure-Level, Analysis, Analyzed Meteorological Fields V5.12.4; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2015. Available online: https://catalog.data.gov/dataset/merra-2-inst6-3d-ana-np-3d6-hourlyinstantaneouspressure-levelanalysisanalyzed-meteorologic (accessed on 14 September 2023).
- M2I6NPANA. Available online: https://disc.gsfc.nasa.gov/datasets/M2I6NPANA_5.12.4/summary (accessed on 14 September 2023).
- Thayer, G.D. An improved equation for the radio refractive index of air. Radio Sci. 1974, 9, 803–807. [Google Scholar] [CrossRef]
- Mendez Astudillo, J.; Lau, L.; Tang, Y.T.; Moore, T. Analysing the Zenith Tropospheric Delay Estimates in On-line Precise Point Positioning (PPP) Services and PPP Software Packages. Sensors 2018, 18, 580. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Park, J.-U.; Cho, J.-H.; Park, P.-H. Seasonal variability of GPS-derived zenith tropospheric delay (1994–2006) and climate implications. J. Geophys. Res. 2007, 112, D09110. [Google Scholar] [CrossRef]
- Tropospheric Delay and Gnss Signals: Tutorial. Available online: http://gnss.be/troposphere_tutorial.php (accessed on 14 September 2023).
- Hocke, K.; Navas-Guzmán, F.; Moreira, L.; Bernet, L.; Mätzler, C. Diurnal Cycle in Atmospheric Water over Switzerland. Remote Sens. 2017, 9, 909. [Google Scholar] [CrossRef]
- Jin, S.; Luo, O.F.; Gleason, S. Characterization of diurnal cycles in ZTD from a decade of global GPS observations. J. Geod. 2009, 83, 537–545. [Google Scholar] [CrossRef]
- COSMEMOS Project. Available online: https://cordis.europa.eu/project/id/287162/en (accessed on 27 March 2024).
- Offiler, D.; Jones, J.; Bennitt, G.; Vedel, H. EIG EUMETNET GNSS Water Vapour Programme (E-GVAP-II) Product Requirements Document. Prepared by: Met Office. 2010. Available online: https://egvap.dmi.dk/support/formats/egvap_prd_v10.pdf (accessed on 1 May 2024).
Station Name | Type of Station | Name of Ship/Site | Lat; Long; Height |
---|---|---|---|
MEAN | SHIP | Mega Andrea | |
LOTA | SHIP | Pascal Lota | |
SMER | SHIP | Mega Smeralda | |
MEFO | SHIP | Mega Express Four | |
METH | SHIP | Mega Express Three | |
MEII | SHIP | Mega Express Two | |
MEON | SHIP | Mega Express | |
CRRM | SHIP | Cruise Roma | |
GROS | GROUND | Grosseto | 42.760; 11.115; 31 m |
LAM1 | GROUND | Sesto Fiorentino | 43.819; 11.202; 59 m |
Station Name | Number of Available Points | Correlation | RMSE [mm] | MBE [mm] | Best Fit Line y = ax + b |
---|---|---|---|---|---|
MEAN | 4376 | 0.91 | 24.15 | −8.8 | y = 0.90 x + 245.13 |
LOTA | 3676 | 0.91 | 22.7 | −7.9 | y = 0.94 x + 147.97 |
SMER | 4175 | 0.92 | 22.5 | −9.0 | y = 0.93 x + 163.63 |
MEFO | 3572 | 0.91 | 22.6 | −7.5 | y = 0.92 x + 201.25 |
METH | 4371 | 0.85 | 30.1 | −5.8 | y = 0.81 x + 463.01 |
MEII | 3857 | 0.94 | 18.4 | −7.3 | y = 0.98 x + 41.1 |
MEON | 4033 | 0.93 | 20.3 | −8.4 | y = 0.95 x + 124.89 |
CRRM | 252 | 0.65 | 42.9 | −1.1 | y = 0.44 x + 1363.61 |
GROS | 2549 | 0.95 | 21.2 | −12.6 | y = 1.03 x − 71.16 |
LAM1 | 2888 | 0.95 | 30.4 | −24.5 | y = 1.07 x − 150.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonini, A.; Fibbi, L.; Viti, M.; Sonnini, A.; Montagnani, S.; Ortolani, A. ZPD Retrieval Performances of the First Operational Ship-Based Network of GNSS Receivers over the North-West Mediterranean Sea. Sensors 2024, 24, 3177. https://doi.org/10.3390/s24103177
Antonini A, Fibbi L, Viti M, Sonnini A, Montagnani S, Ortolani A. ZPD Retrieval Performances of the First Operational Ship-Based Network of GNSS Receivers over the North-West Mediterranean Sea. Sensors. 2024; 24(10):3177. https://doi.org/10.3390/s24103177
Chicago/Turabian StyleAntonini, Andrea, Luca Fibbi, Massimo Viti, Aldo Sonnini, Simone Montagnani, and Alberto Ortolani. 2024. "ZPD Retrieval Performances of the First Operational Ship-Based Network of GNSS Receivers over the North-West Mediterranean Sea" Sensors 24, no. 10: 3177. https://doi.org/10.3390/s24103177
APA StyleAntonini, A., Fibbi, L., Viti, M., Sonnini, A., Montagnani, S., & Ortolani, A. (2024). ZPD Retrieval Performances of the First Operational Ship-Based Network of GNSS Receivers over the North-West Mediterranean Sea. Sensors, 24(10), 3177. https://doi.org/10.3390/s24103177