Load Prediction in Double-Channel Residual Self-Attention Temporal Convolutional Network with Weight Adaptive Updating in Cloud Computing
Abstract
:1. Introduction
2. DSTNW Network
2.1. DSTN
2.1.1. DTN Unit
2.1.2. SM Unit
2.2. Adaptive Weight Update Strategy
3. Experimental Results and Discussion
3.1. Datasets and Implements
Algorithm 1 Training process |
Input: Epoch, number of trainings iterations. LR, learning rate. Series, load series. Label, ground truth of the prediction. |
1: Normseries←(Series-Seriesmin)/(Seriesmax-Seriesmin) 2: Series Input←Preprocess(Normseries) 3: For i in Epoch do: 4: Prediction←Model.Forward(Series Input) 5: MSELOSS←MSE(Prediction, Label) 6: Model.Backward(MSELOSS, LR) 7: End For |
3.2. Parameter Analyses
3.2.1. Network Layer
3.2.2. Time Step
3.3. Ablation Experiment
3.4. Comparisons with Some State-of-the-Art Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bi, J.; Li, S.; Yuan, H.; Zhou, M. Integrated deep learning method for workload and resource prediction in cloud systems. Neurocomputing 2021, 424, 35–48. [Google Scholar] [CrossRef]
- Tang, Z.; Du, L.; Zhang, X.; Yang, L.; Li, K. AEML: An acceleration engine for multi-GPU load-balancing in distributed heterogeneous environment. IEEE Trans. Comput. 2021, 71, 1344–1357. [Google Scholar] [CrossRef]
- Maryam, C.; Faramarz, S. ARIMA: Predictive consolidation of virtual machines applying ARIMA method. J. Supercomput. 2021, 77, 2172–2206. [Google Scholar]
- Dhaval, B.; Deshpande, A. Short-term load forecasting using method of multiple linear regression. New Approaches Eng. Res. 2021, 14, 67–77. [Google Scholar]
- Kaur, M.; Kaur, P.; Sood, S. Energy efficient IoT-based cloud framework for early flood prediction. Nat. Hazards 2021, 109, 2053–2076. [Google Scholar] [CrossRef]
- Ediger, V.; Akar, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007, 35, 1701–1708. [Google Scholar] [CrossRef]
- Rojas, I.; Valenzuela, O.; Rojas, F.; Guillen, A.; Herrera, L.; Pomares, H.; Marquez, L.; Pasadas, M. Soft-computing techniques and ARMA model for time series prediction. Neurocomputing 2008, 71, 519–537. [Google Scholar] [CrossRef]
- Sapankevych, N.; Sankar, R. Time series prediction using support vector machines: A survey. IEEE Comput. Intell. Mag. 2009, 4, 24–38. [Google Scholar] [CrossRef]
- Hamidi, O.; Tapak, L.; Abbasi, H.; Maryanaji, Z. Application of random forest time series, support vector regression and multivariate adaptive regression splines models in prediction of snowfall. Theor. Appl. Climatol. 2018, 134, 769–776. [Google Scholar] [CrossRef]
- Lima, C.; Lall, U. Climate informed monthly streamflow forecasts for the Brazilian hydropower network using a periodic ridge regression model. J. Hydrol. 2010, 380, 438–449. [Google Scholar] [CrossRef]
- Li, J.; Chen, W. Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models. Int. J. Forecast. 2014, 30, 996–1015. [Google Scholar] [CrossRef]
- Cao, L. Support vector machines experts for time series forecasting. Neurocomputing 2003, 51, 321–339. [Google Scholar] [CrossRef]
- Yang, J.; Liu, C.; Shang, Y.; Cheng, B.; Mao, Z.; Liu, C.; Niu, L.; Chen, J. A cost-aware auto-scaling approach using the workload prediction in service clouds. Inf. Syst. Front. 2014, 16, 7–18. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Mostafa, R.R.; Mohammed, A.; Sihag, P.; Qadir, A. Support vector regression (SVR) and grey wolf optimization (GWO) to predict the compressive strength of GGBFS-based geopolymer concrete. Neural Comput. Appl. 2023, 35, 2909–2926. [Google Scholar] [CrossRef]
- Lu, W.; Li, J.; Wang, J.; Qin, K. A CNN-BiLSTM-AM method for stock price prediction. Neural Comput. Appl. 2021, 33, 4741–4753. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Xia, M.; Shao, H.; Ma, X.; de Silva, C.W. A stacked GRU-RNN-based approach for predicting renewable energy and electricity load for smart grid operation. IEEE Trans. Ind. Inform. 2021, 17, 7050–7059. [Google Scholar] [CrossRef]
- Karim, E.; Maswood, M.M.S.; Das, S.; Alharbi, A.G. BHyPreC: A novel Bi-LSTM based hybrid recurrent neural network model to predict the CPU workload of cloud virtual machine. IEEE Access 2021, 9, 131476–131495. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the Neural Information Processing Systems Conference, Montreal, QC, Canada, 7–12 December 2015; pp. 802–810. [Google Scholar]
- Karim, F.; Majumdar, S.; Darabi, H.; Harford, S. Multivariate LSTM-FCNs for time series classification. Neural Netw. 2019, 116, 237–245. [Google Scholar] [CrossRef]
- Meng, D.; Wang, H.; Yang, S.; Lv, Z.; Hu, Z.; Wang, Z. Fault analysis of wind power rolling bearing based on EMD feature extraction. Comput. Model. Eng. Sci. 2022, 130, 543–558. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Li, J.; Wu, J. Multilevel wavelet decomposition network for interpretable time series analysis. In Proceedings of the 24th ACM SIGKDD International Conference, London, UK, 19–23 August 2018; pp. 2437–2446. [Google Scholar]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, H.; Luo, P.; Peng, Y.; Li, Q. Ultra-short-term railway traction load prediction based on DWT-TCN-PSO_SVR combined model. Int. J. Electr. Power Energy Syst. 2022, 135, 107595–107605. [Google Scholar] [CrossRef]
- Yang, W.; Xia, K.; Fan, S. Oil logging reservoir recognition based on TCN and SA-BiLSTM deep learning method. Eng. Appl. Artif. Intell. 2023, 121, 105950. [Google Scholar] [CrossRef]
- Xiong, C.; Guan, Y. A cloud computing load prediction hybrid model with adaptive weight strategy. Signal Image Video Process. 2022, 17, 2101–2109. [Google Scholar] [CrossRef]
- Limouni, T.; Yaagoubi, R.; Bouziane, K.; Guissi, K.; Baali, E.H. Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model. Renew. Energy 2023, 205, 1010–1024. [Google Scholar] [CrossRef]
- Luo, W.; Dou, J.; Fu, Y.; Wang, X.; He, Y.; Ma, H.; Wang, R.; Xing, K. A novel hybrid LMD-ETS-TCN approach for predicting landslide displacement based on GPS time series analysis. Remote Sens. 2023, 15, 229. [Google Scholar] [CrossRef]
- Wan, R.; Mei, S.; Wang, J.; Liu, M.; Yang, F. Multivariate temporal convolutional network: A deep neural networks approach for multivariate time Series forecasting. Electronics 2019, 8, 876. [Google Scholar] [CrossRef]
- Shang, Z.; Zhang, B.; Li, W.; Qian, S.; Zhang, J. Machine remaining life prediction based on multi-layer self-attention and temporal convolution network. Complex Intell. Syst. 2022, 8, 1409–1424. [Google Scholar] [CrossRef]
- Liu, X.; Chen, S.; Song, L.; Woźniak, M.; Liu, S. Self-attention negative feedback network for real-time image super-resolution. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 6179–6186. [Google Scholar] [CrossRef]
- Cao, H.; Wu, C.; Lu, J.; Wu, J.; Wang, L. Spatial-temporal injection network: Exploiting auxiliary losses for action recognition with apparent difference and self-attention. Signal Image Video Process. 2023, 17, 1173–1180. [Google Scholar] [CrossRef]
- Tang, X.; Liu, Q.; Dong, Y.; Han, J.; Zhang, Z. Fisher: An efficient container load prediction model with deep neural network in clouds. In Proceedings of the 2018 IEEE International Conference on Parallel & Distributed Processing with Applications, Melbourne, Australia, 11–13 December 2018; pp. 199–206. [Google Scholar]
- Yao, L.; John, P.; Lu, L.; Yan, W. RVLBPNN: A workload forecasting model for smart cloud computing. Sci. Program. 2016, 2016, 5635673. [Google Scholar]
Methods | Container [34] | Google [35] | ||||||
---|---|---|---|---|---|---|---|---|
RMSE↓ | MAE↓ | MAPE↓ | PCC↑ | RMSE↓ | MAE↓ | MAPE↓ | PCC↑ | |
TCN [26] | 0.164 | 0.124 | 7.146% | 0.988 | 0.027 | 0.021 | 3.186% | 0.945 |
DTN | 0.148 | 0.129 | 6.138% | 0.987 | 0.026 | 0.021 | 3.297% | 0.950 |
TCN-SM | 0.153 | 0.119 | 7.154% | 0.985 | 0.027 | 0.021 | 3.336% | 0.947 |
DSTN | 0.148 | 0.129 | 7.850% | 0.990 | 0.025 | 0.015 | 2.329% | 0.971 |
DSTNW | 0.128 | 0.090 | 5.491% | 0.994 | 0.020 | 0.013 | 2.312% | 0.988 |
Methods | Container [34] | Google [35] | ||||||
---|---|---|---|---|---|---|---|---|
RMSE↓ | MAE↓ | MAPE↓ | PCC↑ | RMSE↓ | MAE↓ | MAPE↓ | PCC↑ | |
ARIMA [3] | 0.194 | 0.155 | 10.235% | 0.975 | 0.029 | 0.023 | 3.502% | 0.948 |
LSTM [18] | 0.168 | 0.129 | 8.413% | 0.976 | 0.028 | 0.022 | 3.383% | 0.944 |
TCN [26] | 0.164 | 0.124 | 7.146% | 0.988 | 0.027 | 0.021 | 3.186% | 0.945 |
Ours | 0.128 | 0.090 | 5.491% | 0.994 | 0.020 | 0.013 | 2.312% | 0.988 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Guan, Y. Load Prediction in Double-Channel Residual Self-Attention Temporal Convolutional Network with Weight Adaptive Updating in Cloud Computing. Sensors 2024, 24, 3181. https://doi.org/10.3390/s24103181
Lin J, Guan Y. Load Prediction in Double-Channel Residual Self-Attention Temporal Convolutional Network with Weight Adaptive Updating in Cloud Computing. Sensors. 2024; 24(10):3181. https://doi.org/10.3390/s24103181
Chicago/Turabian StyleLin, Jiang, and Yepeng Guan. 2024. "Load Prediction in Double-Channel Residual Self-Attention Temporal Convolutional Network with Weight Adaptive Updating in Cloud Computing" Sensors 24, no. 10: 3181. https://doi.org/10.3390/s24103181
APA StyleLin, J., & Guan, Y. (2024). Load Prediction in Double-Channel Residual Self-Attention Temporal Convolutional Network with Weight Adaptive Updating in Cloud Computing. Sensors, 24(10), 3181. https://doi.org/10.3390/s24103181