Explainable AI: Machine Learning Interpretation in Blackcurrant Powders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Collection and Preprocessing
2.2. Feature Extraction Using Gray-Level Co-Occurrence Matrix
2.3. Machine Learning
2.4. Interpretability of Decision Making in Machine Learning
3. Results and Discussion
3.1. The Results of Machine Learning
3.2. Interpretability of Machine Learning
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dowlati, M.; de la Guardia, M.; Dowlati, M.; Mohtasebi, S.S. Application of Machine-Vision Techniques to Fish-Quality Assessment. TrAC Trends Anal. Chem. 2012, 40, 168–179. [Google Scholar] [CrossRef]
- Affonso, C.; Rossi, A.L.D.; Vieira, F.H.A.; de Carvalho, A.C.P.d.L.F. Deep Learning for Biological Image Classification. Expert Syst. Appl. 2017, 85, 114–122. [Google Scholar] [CrossRef]
- Li, X.; Kong, X.; Liu, Z.; Hu, Z.; Shi, C. A Novel Framework for Early Pitting Fault Diagnosis of Rotating Machinery Based on Dilated CNN Combined with Spatial Dropout. IEEE Access 2021, 9, 29243–29252. [Google Scholar] [CrossRef]
- Camacho, D.M.; Collins, K.M.; Powers, R.K.; Costello, J.C.; Collins, J.J. Next-Generation Machine Learning for Biological Networks. Cell 2018, 173, 1581–1592. [Google Scholar] [CrossRef]
- Yamashkin, S.; Yamashkin, A.; Radovanović, M.; Petrović, M.; Yamashkina, E. Classification of Metageosystems by Ensembles of Machine Learning Models. Int. J. Eng. Trends Technol. 2022, 70, 258–268. [Google Scholar] [CrossRef]
- Zhang, T.; Fu, Q.; Wang, H.; Liu, F.; Wang, H.; Han, L. Bagging-Based Machine Learning Algorithms for Landslide Susceptibility Modeling. Nat. Hazards 2022, 110, 823–846. [Google Scholar] [CrossRef]
- Huang, L.; Yin, Y.; Fu, Z.; Zhang, S.; Deng, H.; Liu, D. LoAdaBoost: Loss-Based AdaBoost Federated Machine Learning with Reduced Computational Complexity on IID and Non-IID Intensive Care Data. PLoS ONE 2020, 15, e0230706. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Kong, D.; Pan, L.; Bao, Z. Skin-Inspired Electronics: Emerging Semiconductor Devices and Systems. J. Semicond. 2020, 41, 041601. [Google Scholar] [CrossRef]
- Stentoumis, C.; Protopapadakis, E.; Doulamis, A.; Doulamis, N. A Holistic Approach for Inspection of Civil Infrastructures Based on Computer Vision Techniques. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Prague, Czech Republic, 12–19 July 2016; Volume 41. [Google Scholar]
- Mohammed Abdelkader, E. On the Hybridization of Pre-Trained Deep Learning and Differential Evolution Algorithms for Semantic Crack Detection and Recognition in Ensemble of Infrastructures. Smart Sustain. Built Environ. 2022, 11, 740–764. [Google Scholar] [CrossRef]
- Chen, L.; He, J.; Wu, Y.; Tang, Y.; Ge, G.; Wang, W. Detection and 3D Visualization of Human Tooth Surface Cracks Using Line Structured Light. IEEE Sens. J. 2024, 24, 13958–13967. [Google Scholar] [CrossRef]
- Yuan, C.; Xiong, B.; Li, X.; Sang, X.; Kong, Q. A Novel Intelligent Inspection Robot with Deep Stereo Vision for Three-Dimensional Concrete Damage Detection and Quantification. Struct. Health Monit. 2022, 21, 788–802. [Google Scholar] [CrossRef]
- Sagar, N.P.; Nagpal, H.S.; Chougle, A.; Chamola, V.; Sikdar, B. Computer Vision and IoT-Enabled Robotic Platform for Automated Crack Detection in Road and Bridges. In Proceedings of the 2023 IEEE 6th International Conference on Multimedia Information Processing and Retrieval (MIPR), Singapore, 30 August–1 September 2023; pp. 1–6. [Google Scholar]
- Nair, S.R.; Rooby, J. Application of Autonomous Robots for Health Monitoring of Structures, A Review. Int. J. Mech. Prod. Eng. Res. Dev. 2018, 8, 69–74. [Google Scholar] [CrossRef]
- Yip, M.; Salcudean, S.; Goldberg, K.; Althoefer, K.; Menciassi, A.; Opfermann, J.D.; Krieger, A.; Swaminathan, K.; Walsh, C.J.; Huang, H.; et al. Artificial Intelligence Meets Medical Robotics. Science 2023, 381, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Pieszko, K.; Hiczkiewicz, J.; Budzianowski, J.; Musielak, B.; Hiczkiewicz, D.; Faron, W.; Rzeźniczak, J.; Burchardt, P. Clinical Applications of Artificial Intelligence in Cardiology on the Verge of the Decade. Cardiol. J. 2021, 28, 460–472. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, S.E.; Trayanova, N. Primer on Machine Learning in Electrophysiology. Arrhythm. Electrophysiol. Rev. 2023, 12, e06. [Google Scholar] [CrossRef] [PubMed]
- Elbadawi, M.; Gaisford, S.; Basit, A.W. Advanced Machine-Learning Techniques in Drug Discovery. Drug Discov. Today 2021, 26, 769–777. [Google Scholar] [CrossRef]
- Feng, J.; Liu, X. No More Free Lunch: The Increasing Popularity of Machine Learning and Financial Market Efficiency. Econ. Polit. Stud. 2024, 12, 34–57. [Google Scholar] [CrossRef]
- Tsai, M.-J.; Wu, Y.-Q. Predicting Online News Popularity Based on Machine Learning. Comput. Electr. Eng. 2022, 102, 108198. [Google Scholar] [CrossRef]
- Sadok, H.; Mahboub, H.; Chaibi, H.; Saadane, R.; Wahbi, M. Applications of Artificial Intelligence in Finance: Prospects, Limits and Risks. In Proceedings of the 2023 International Conference on Digital Age & Technological Advances for Sustainable Development (ICDATA), Casablanca, Morocco, 3–5 May 2023; pp. 145–149. [Google Scholar]
- Gierz, Ł.; Przybył, K. Texture Analysis and Artificial Neural Networks for Identification of Cereals—Case Study: Wheat, Barley and Rape Seeds. Sci. Rep. 2022, 12, 19316. [Google Scholar] [CrossRef] [PubMed]
- Przybył, K.; Boniecki, P.; Koszela, K.; Gierz, Ł.; Łukomski, M. Computer Vision and Artificial Neural Network Techniques for Classification of Damage in Potatoes during the Storage Process. Czech J. Food Sci. 2019, 37, 135–140. [Google Scholar] [CrossRef]
- Przybył, K.; Samborska, K.; Koszela, K.; Masewicz, L.; Pawlak, T. Artificial Neural Networks in the Evaluation of the Influence of the Type and Content of Carrier on Selected Quality Parameters of Spray Dried Raspberry Powders. Measurement 2021, 186, 110014. [Google Scholar] [CrossRef]
- Jedlińska, A.; Wiktor, A.; Witrowa-Rajchert, D.; Derewiaka, D.; Wołosiak, R.; Matwijczuk, A.; Niemczynowicz, A.; Samborska, K. Quality Assessment of Honey Powders Obtained by High- and Low-Temperature Spray Drying. Appl. Sci. 2020, 11, 224. [Google Scholar] [CrossRef]
- Jedlińska, A.; Samborska, K.; Wieczorek, A.; Wiktor, A.; Ostrowska-Ligęza, E.; Jamróz, W.; Skwarczyńska-Maj, K.; Kiełczewski, D.; Błażowski, Ł.; Tułodziecki, M.; et al. The Application of Dehumidified Air in Rapeseed and Honeydew Honey Spray Drying—Process Performance and Powders Properties Considerations. J. Food Eng. 2019, 245, 80–87. [Google Scholar] [CrossRef]
- Haas, K.; Obernberger, J.; Zehetner, E.; Kiesslich, A.; Volkert, M.; Jaeger, H. Impact of Powder Particle Structure on the Oxidation Stability and Color of Encapsulated Crystalline and Emulsified Carotenoids in Carrot Concentrate Powders. J. Food Eng. 2019, 263, 398–408. [Google Scholar] [CrossRef]
- Bhandari, B.; Bansal, N.; Zhang, M.; Schuck, P. Handbook of Food Powders; Woodhead Publishing Limited: Sawston, UK, 2013; ISBN 978-0-85709-513-8. [Google Scholar]
- Kolarik, M.; Sarnovsky, M.; Paralic, J.; Babic, F. Explainability of Deep Learning Models in Medical Video Analysis: A Survey. PeerJ. Comput. Sci. 2023, 9, e1253. [Google Scholar] [CrossRef] [PubMed]
- Minh, D.; Wang, H.X.; Li, Y.F.; Nguyen, T.N. Explainable Artificial Intelligence: A Comprehensive Review. Artif. Intell. Rev. 2022, 55, 3503–3568. [Google Scholar] [CrossRef]
- Nauta, M.; Trienes, J.; Pathak, S.; Nguyen, E.; Peters, M.; Schmitt, Y.; Schlötterer, J.; Van Keulen, M.; Seifert, C. From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI. ACM Comput. Surv. 2023, 55, 1–42. [Google Scholar] [CrossRef]
- Islam, M.R.; Ahmed, M.U.; Barua, S.; Begum, S. A Systematic Review of Explainable Artificial Intelligence in Terms of Different Application Domains and Tasks. Appl. Sci. 2022, 12, 1353. [Google Scholar] [CrossRef]
- Kute, D.V.; Pradhan, B.; Shukla, N.; Alamri, A. Deep Learning and Explainable Artificial Intelligence Techniques Applied for Detecting Money Laundering–A Critical Review. IEEE Access 2021, 9, 82300–82317. [Google Scholar] [CrossRef]
- Theissler, A.; Spinnato, F.; Schlegel, U.; Guidotti, R. Explainable AI for Time Series Classification: A Review, Taxonomy and Research Directions. IEEE Access 2022, 10, 100700–100724. [Google Scholar] [CrossRef]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2020, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, S.Y.; Zhuang, Y.K.; Gao, Y. Explainable Reinforcement Learning: Basic Problems Exploration and Method Survey. J. Softw. 2023, 34, 2300–2316. [Google Scholar] [CrossRef]
- Przybył, K.; Koszela, K.; Adamski, F.; Samborska, K.; Walkowiak, K.; Polarczyk, M. Deep and Machine Learning Using SEM, FTIR, and Texture Analysis to Detect Polysaccharide in Raspberry Powders. Sensors 2021, 21, 5823. [Google Scholar] [CrossRef] [PubMed]
- Przybył, K.; Walkowiak, K.; Jedlińska, A.; Samborska, K.; Masewicz, Ł.; Biegalski, J.; Pawlak, T.; Koszela, K. Fruit Powder Analysis Using Machine Learning Based on Color and FTIR-ATR Spectroscopy—Case Study: Blackcurrant Powders. Appl. Sci. 2023, 13, 9098. [Google Scholar] [CrossRef]
- Pfrommer, J.; Zimmerling, C.; Liu, J.; Kärger, L.; Henning, F.; Beyerer, J. Optimisation of Manufacturing Process Parameters Using Deep Neural Networks as Surrogate Models. Procedia CIRP 2018, 72, 426–431. [Google Scholar] [CrossRef]
- Kiakojoori, S.; Khorasani, K. Dynamic Neural Networks for Gas Turbine Engine Degradation Prediction, Health Monitoring and Prognosis. Neural Comput. Appl. 2016, 27, 2157–2192. [Google Scholar] [CrossRef]
- Przybył, K.; Walkowiak, K.; Kowalczewski, P.Ł. Efficiency of Identification of Blackcurrant Powders Using Classifier Ensembles. Foods 2024, 13, 697. [Google Scholar] [CrossRef] [PubMed]
- Yogeshwari, M.; Thailambal, G. Automatic Feature Extraction and Detection of Plant Leaf Disease Using GLCM Features and Convolutional Neural Networks. Mater. Today Proc. 2023, 81, 530–536. [Google Scholar] [CrossRef]
- Numbisi, F.N.; Van Coillie, F.M.B.; De Wulf, R. Delineation of Cocoa Agroforests Using Multiseason Sentinel-1 SAR Images: A Low Grey Level Range Reduces Uncertainties in GLCM Texture-Based Mapping. ISPRS Int. J. Geoinf. 2019, 8, 179. [Google Scholar] [CrossRef]
- Mohammadpour, P.; Viegas, D.X.; Viegas, C. Vegetation Mapping with Random Forest Using Sentinel 2 and GLCM Texture Feature—A Case Study for Lousã Region, Portugal. Remote Sens. 2022, 14, 4585. [Google Scholar] [CrossRef]
- Frochte, J. Python, NumPy, SciPy Und Matplotlib—In a Nutshell. In Maschinelles Lernen; Carl Hanser Verlag GmbH & Co. KG: München, Germany, 2020; pp. 38–77. [Google Scholar]
- Chollet, F. Deep Learning with Python, 2nd ed.; Manning: Shelter Island, NY, USA, 2021; ISBN 9781617296864. [Google Scholar]
- Shashikant, R.; Chetankumar, P. Predictive Model of Cardiac Arrest in Smokers Using Machine Learning Technique Based on Heart Rate Variability Parameter. Appl. Comput. Inform. 2023, 19, 174–185. [Google Scholar] [CrossRef]
- van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. Scikit-Image: Image Processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hao, J.; Ho, T.K. Machine Learning Made Easy: A Review of Scikit-Learn Package in Python Programming Language. J. Educ. Behav. Stat. 2019, 44, 348–361. [Google Scholar] [CrossRef]
- Chandrasekhar, N.; Peddakrishna, S. Enhancing Heart Disease Prediction Accuracy through Machine Learning Techniques and Optimization. Processes 2023, 11, 1210. [Google Scholar] [CrossRef]
- Ahn, J.M.; Kim, S.; Ahn, K.S.; Cho, S.H.; Kim, U.S. Accuracy of Machine Learning for Differentiation between Optic Neuropathies and Pseudopapilledema. BMC Ophthalmol. 2019, 19, 178. [Google Scholar] [CrossRef] [PubMed]
- Sivanantham, S.; Mohanraj, V.; Suresh, Y.; Senthilkumar, J. Rule Precision Index Classifier: An Associative Classifier with a Novel Pruning Measure for Intrusion Detection. Pers. Ubiquitous Comput. 2023, 27, 1–9. [Google Scholar] [CrossRef]
- Visani, G.; Bagli, E.; Chesani, F.; Poluzzi, A.; Capuzzo, D. Statistical Stability Indices for LIME: Obtaining Reliable Explanations for Machine Learning Models. J. Oper. Res. Soc. 2022, 73, 91–101. [Google Scholar] [CrossRef]
- Ali, R.; Lee, S.; Chung, T.C. Accurate Multi-Criteria Decision Making Methodology for Recommending Machine Learning Algorithm. Expert. Syst. Appl. 2017, 71, 257–278. [Google Scholar] [CrossRef]
- Singh, S.; Selvakumar, S. A Hybrid Feature Subset Selection by Combining Filters and Genetic Algorithm. In Proceedings of the International Conference on Computing, Communication & Automation, Greater Noida, India, 15–16 May 2015; pp. 283–289. [Google Scholar]
- Li, B.; Zhang, P.; Tian, H.; Mi, S.; Liu, D.; Ren, G. A New Feature Extraction and Selection Scheme for Hybrid Fault Diagnosis of Gearbox. Expert. Syst. Appl. 2011, 38, 10000–10009. [Google Scholar] [CrossRef]
- Chahkoutahi, F.; Khashei, M. Influence of Cost/Loss Functions on Classification Rate: A Comparative Study across Diverse Classifiers and Domains. Eng. Appl. Artif. Intell. 2024, 128, 107415. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Wen, S.; Tang, C. A Strategy on Selecting Performance Metrics for Classifier Evaluation. Int. J. Mob. Comput. Multimed. Commun. 2014, 6, 20–35. [Google Scholar] [CrossRef]
- Ha, D.; Tomotoshi, Y.; Senda, M.; Watanabe, H.; Katagiri, S.; Ohsaki, M. Improvement for Boundary-Uncertainty-Based Classifier Parameter Status Selection Method. In Proceedings of the 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), Shanghai, China, 20–22 March 2019; pp. 1–3. [Google Scholar]
- Kavya, R.; Christopher, J.; Panda, S. ScaPMI: Scaling Parameter for Metric Importance. In Proceedings of the 14th International Conference on Agents and Artificial Intelligence, SCITEPRESS—Science and Technology Publications. Online, 3–5 February 2022; Volume 3, pp. 83–90. [Google Scholar]
- Bashir, D.; Montañez, G.D.; Sehra, S.; Segura, P.S.; Lauw, J. An Information-Theoretic Perspective on Overfitting and Underfitting. In AI 2020: Advances in Artificial Intelligence; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12576, pp. 347–358. [Google Scholar]
- Mosavi, A.; Sajedi Hosseini, F.; Choubin, B.; Goodarzi, M.; Dineva, A.A.; Rafiei Sardooi, E. Ensemble Boosting and Bagging Based Machine Learning Models for Groundwater Potential Prediction. Water Resour. Manag. 2021, 35, 23–37. [Google Scholar] [CrossRef]
- Xia, H.; Tang, J. An Improved Deep Forest Regression. In Proceedings of the 2021 3rd International Conference on Industrial Artificial Intelligence (IAI), Shenyang, China, 8 November 2021; pp. 1–6. [Google Scholar]
- Fan, Y.; Qi, L.; Tie, Y. The Cascade Improved Model Based Deep Forest for Small-Scale Datasets Classification. In Proceedings of the 2019 8th International Symposium on Next Generation Electronics (ISNE), Zhengzhou, China, 9–10 October 2019; pp. 1–3. [Google Scholar]
- Gao, X.; Wen, J.; Zhang, C. An Improved Random Forest Algorithm for Predicting Employee Turnover. Math. Probl. Eng. 2019, 2019, 4140707. [Google Scholar] [CrossRef]
- Lee, V.E.; Liu, L.; Jin, R. Data Classification; Aggarwal, C.C., Ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014; ISBN 9781466586758. [Google Scholar]
- Han, J. System Optimization of Talent Life Cycle Management Platform Based on Decision Tree Model. J. Math. 2022, 2022, 2231112. [Google Scholar] [CrossRef]
- García, V.; Sánchez, J.S.; Marqués, A.I.; Florencia, R.; Rivera, G. Understanding the Apparent Superiority of Over-Sampling through an Analysis of Local Information for Class-Imbalanced Data. Expert. Syst. Appl. 2020, 158, 113026. [Google Scholar] [CrossRef]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans Knowl Data Eng 2009, 21, 1263–1284. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, Z.; Yu, W.; Sun, X. Perspective on Explainable SAR Target Recognition. J. Radars 2020, 9, 462–476. [Google Scholar] [CrossRef]
- Rjoub, G.; Bentahar, J.; Abdel Wahab, O.; Mizouni, R.; Song, A.; Cohen, R.; Otrok, H.; Mourad, A. A Survey on Explainable Artificial Intelligence for Cybersecurity. IEEE Trans. Netw. Serv. Manag. 2023, 20, 5115–5140. [Google Scholar] [CrossRef]
- Memarzadeh, M.; Akbari Asanjan, A.; Matthews, B. Robust and Explainable Semi-Supervised Deep Learning Model for Anomaly Detection in Aviation. Aerospace 2022, 9, 437. [Google Scholar] [CrossRef]
- Alsaleh, M.M.; Allery, F.; Choi, J.W.; Hama, T.; McQuillin, A.; Wu, H.; Thygesen, J.H. Prediction of Disease Comorbidity Using Explainable Artificial Intelligence and Machine Learning Techniques: A Systematic Review. Int. J. Med. Inf. 2023, 175, 105088. [Google Scholar] [CrossRef]
- Data of Analysis of the Influence of Microparticle Morphology on the Qualitative state of Spray-Dried Fruit with the Use of Deep Learning. [CrossRef]
Machine Learning Algorithm Type | Name | Hyperparameters Used |
---|---|---|
DecisionTreeClassifier | DT5 | max_depth = 5 |
DecisionTreeClassifier | DT3 | max_depth = 3 |
DecisionTreeClassifier | DT_best | splitter = best |
DecisionTreeClassifier | DT0 | default |
RandomForestClassifier | RF3_gini | max_depth = 3, criterion = gini |
RandomForestClassifier | RF5_gini | max_depth = 5, criterion = gini |
RandomForestClassifier | RF3 | max_depth = 3, n_estimators = 1000 |
RandomForestClassifier | RF5 | max_depth = 5, n_estimators = 1000 |
RandomForestClassifier | RF7_gini | max_depth = 7, criterion = gini |
RandomForestClassifier | RF7 | max_depth = 7, n_estimators = 1000 |
BaggingClassifier | Bagging | default |
BaggingClassifier | Bagging_100 | n_estimators = 100 |
KNeighborsClassifier | KNN | default |
LogisticRegression | LogReg | default |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybył, K. Explainable AI: Machine Learning Interpretation in Blackcurrant Powders. Sensors 2024, 24, 3198. https://doi.org/10.3390/s24103198
Przybył K. Explainable AI: Machine Learning Interpretation in Blackcurrant Powders. Sensors. 2024; 24(10):3198. https://doi.org/10.3390/s24103198
Chicago/Turabian StylePrzybył, Krzysztof. 2024. "Explainable AI: Machine Learning Interpretation in Blackcurrant Powders" Sensors 24, no. 10: 3198. https://doi.org/10.3390/s24103198
APA StylePrzybył, K. (2024). Explainable AI: Machine Learning Interpretation in Blackcurrant Powders. Sensors, 24(10), 3198. https://doi.org/10.3390/s24103198