Radiation Damage Mechanisms and Research Status of Radiation-Resistant Optical Fibers: A Review
Abstract
:1. Introduction
2. Radiation Damage Mechanisms in Optical Fibers
2.1. Microscopic Effects of Irradiation Damage
2.1.1. Ionization Damage
2.1.2. Displacement Damage
2.1.3. Color Center Defects
2.1.4. Point Defect Generation
2.2. Macroscopic Effects of Radiation Damage
2.2.1. Radiation-Induced Attenuation (RIA) mechanism
2.2.2. Densification Mechanism
3. Research Status of Radiation-Resistant Fiber Design
3.1. Radiation-Resistant Fluorine-Doped Fibers
3.2. Radiation-Resistant Erbium-Doped Fibers
3.3. Radiation-Resistant Ytterbium-and-Erbium Co-Doped Fibers
3.4. Radiation-Resistant Nitrogen-Doped Fibers
3.5. Radiation-Resistant Germanium-Doped Fibers
3.6. Radiation-Resistant Cerium-Doped Fibers
3.7. Radiation-Resistant Aluminum-Doped Fibers
3.8. Radiation-Resistant Phosphorus-Doped Fibers
3.9. Influence of the Fiber Structure on Its Radiation Response
3.10. Radiation-Resistant Fibers Fabricated by a Pretreatment Method
4. Summary and Prospects
- (1)
- Fluorine doping: Fluorine-doped optical fibers represent one of the mainstream development approaches for radiation-resistant fibers. Although the underlying mechanisms and optimal doping concentrations are not yet fully understood, the current research indicates that fluorine doping can significantly enhance the radiation resistance of optical fibers.
- (2)
- Metal element doping: Metal-element-doped optical fibers represent another mainstream development approach for radiation-resistant fibers. Among them, erbium-doped, ytterbium-doped, and erbium/ytterbium co-doped fibers have been well developed and are widely used in deep space exploration, ground communications, and other fields. It is worth noting that cerium doping has also been reported to improve the radiation resistance of certain types of optical fibers, showing some development potential. However, germanium doping does not effectively enhance the radiation resistance of optical fibers and is only applicable to certain specialized areas. Therefore, germanium-doped fibers may not be the mainstream direction for future radiation-resistant fiber development.
- (3)
- Nitrogen doping: There are relatively few reports on nitrogen-doped optical fibers currently, but limited studies suggest that nitrogen doping can effectively improve the radiation resistance of optical fibers. Particularly, fiber Bragg gratings made from nitrogen-doped fibers have shown excellent performance in radiation environments.
- (4)
- Various pre-treatment methods: Pre-treatment methods for radiation-resistant optical fibers mainly include gas loading, pre-irradiation, and pre-dehydration. Gas loading pre-treatment has matured and can effectively enhance the radiation resistance of optical fibers, with relatively well-understood mechanisms.
- (5)
- Aluminum-doped and phosphorus-doped fibers: These types of fibers exhibit good sensitivity to radiation-induced attenuation (RIA), making them suitable for manufacturing high-performance radiation dosimeters. Although this characteristic does not meet the requirements for excellent radiation resistance, as needed for communication fibers, leveraging this property enables the production of excellent radiation dosimeters. It is worth noting that radiation dosimeters made from phosphorus-doped fibers not only possess many desirable characteristics but have also been demonstrated to have the potential for recovery and reuse. This indicates that phosphorus-doped fiber radiation dosimeters have a longer lifespan and lower maintenance costs, showcasing significant development potential.
Funding
Conflicts of Interest
References
- Wang, J.; Zhou, Y.; Xu, L.; Jiang, L.; Wang, L. Magnetic kirigami by laser cutting. Acta Mech. Solida. Sin. 2023, 36, 594–601. [Google Scholar] [CrossRef]
- Krüger, J.; Bonse, J. Special Issue “Advanced Pulse Laser Machining Technology”. Materials 2023, 16, 819. [Google Scholar] [CrossRef] [PubMed]
- Lin, O.; Xiao, G.; Liu, S.; Zhou, Y.; Liu, Z.; Huang, J.; Yin, K. Rapid multiscale surface texture manufacturing process using hybrid laser belt machining. J. Mater. Process. Technol. 2023, 319, 118092. [Google Scholar] [CrossRef]
- Dodd, N.; Ballantyne, E.; Heron, G.; Goodall, R. Multi-layer laser cutting of electrical steel sheets applied to electric machine laminations. PLoS ONE 2023, 18, e0288232. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.N. Data perspectives in AI-assisted fiber-optic communication networks. IEEE Netw. 2023, 37, 206–214. [Google Scholar] [CrossRef]
- Khan, F.N. Machine learning-enabled intelligent fiber-optic communications: Major obstacles and the way forward. IEEE Commun. Mag. 2022, 61, 122–128. [Google Scholar] [CrossRef]
- Chagnon, M.; Morita, I. Series Editorial: Optical Communications and Networks. IEEE Commun. Mag. 2022, 60, 47. [Google Scholar] [CrossRef]
- Wang, X.; Chen, G.; Zhang, K.; Li, R.A.; Jiang, Z.; Zhou, H.; Gan, J.; He, M. Self-healing multimodal flexible optoelectronic fiber sensors. Chem. Mater. 2023, 35, 1345–1354. [Google Scholar] [CrossRef]
- Ran, Y.; Xu, Z.; Chen, M.; Wang, W.; Wu, Y.; Cai, J.; Long, J.; Chen, Z.S.; Zhang, D.; Guan, B.O. Fiber-optic theranostics (FOT): Interstitial fiber-optic needles for cancer sensing and therapy. Adv. Sci. 2022, 9, 2200456. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Culp, J.T.; Wuenschell, J.; Shugayev, R.A.; Ohodnicki, P.R.; Sekizkardes, A.K. Sorption-Induced Fiber Optic Plasmonic Gas Sensing via Small Grazing Angle of Incidence. Adv. Mater. 2023, 35, 2301293. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Man, H.Y.; Meng, C.; Liu, P.; Li, S.; Kwok, H.S.; Zi, Y. A fully self-powered, natural-light-enabled fiber-optic vibration sensing solution. Susmat 2021, 1, 593–602. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Qiang, Y.; Zhang, Z.; Wang, X.; Xue, Y.; Yuan, Y.; Wang, Y.; Qin, Y. High spatial resolution internal stress testing and analysis of fiber optic winding structure using BOTDA. J. Light. Technol. 2023, 41, 5138–5145. [Google Scholar] [CrossRef]
- Bao, X. Prospects on ultrasound measurement techniques with optical fibers. Meas. Sci. Technol. 2023, 34, 051001. [Google Scholar] [CrossRef]
- Rong, Q.; Wang, Y.; Shao, Z.; Qiao, X. Large diameter fiber-optics tweezers for escherichia coli bacteria manipulation. IEEE J. Sel. Top. Quantum. Electron. 2018, 25, 1–7. [Google Scholar] [CrossRef]
- Collard, L.; Pisano, F.; Zheng, D.; Balena, A.; Kashif, M.F.; Pisanello, M.; D’Orazio, A.; De La Prida, L.M.; Ciracì, C. Holographic Manipulation of Nanostructured Fiber Optics Enables Spatially-Resolved, Reconfigurable Optical Control of Plasmonic Local Field Enhancement and SERS. Small 2022, 18, 2200975. [Google Scholar] [CrossRef] [PubMed]
- López-Lapeña, O.; Polo-Cantero, J. Time-Division Multiplexing for Power and Data Transmission on Optical Fibers. IEEE Internet. Things J. 2022, 9, 17785–17792. [Google Scholar] [CrossRef]
- Bu, F.; Luo, H.; Ma, S.; Li, X.; Ruby, R.; Han, G. AUV-Aided Optical—Acoustic Hybrid Data Collection Based on Deep Reinforcement Learning. Sensors 2023, 23, 578. [Google Scholar] [CrossRef]
- Akinci, A.; Bowden, M.D.; Cheeseman, M.C.; Knowles, S.L.; Meister, D.C.; Pecak, S.N.; Potter, K.S. The effect of high dose rate transient gamma radiation on high-energy optical fibers. In Optical Technologies for Arming, Safing, Fuzing, and Firing V; SPIE: San Diego, CA, USA, 2009; pp. 71–82. [Google Scholar]
- Sporea, D.; Sporea, A.; O’Keeffe, S.; Mccarthy, D.; Lewis, E. Optical Fibers and Optical Fiber Sensors Used in Radiation Monitoring; IntechOpen: London, UK, 2012. [Google Scholar]
- Butov, O.V.; Chamorovskiy, Y.K.; Bazakutsa, A.P.; Fedorov, A.N.; Igor’A, S. Optical fiber sensor for deformation monitoring of fuel channels in industrial nuclear reactors. In Proceedings of the 26th International Conference on Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018; pp. 1–13. [Google Scholar]
- Cheymol, G.; Maurin, L.; Remy, L.; Arounassalame, V.; Maskrot, H.; Rougeault, S.; Dauvois, V.; Le Tutour, P.; Huot, N.; Ouerdane, Y.; et al. Irradiation tests of optical fibers and cables devoted to corium monitoring in case of a severe accident in a nuclear power plant. IEEE Trans. Nucl. Sci. 2020, 67, 669–678. [Google Scholar] [CrossRef]
- Hyer, H.C.; Giuliano, D.R.; Petrie, C.M. Toward local core outlet temperature monitoring in gas-cooled nuclear reactors using distributed fiber-optic temperature sensors. Appl. Therm. Eng. 2023, 230, 120847. [Google Scholar] [CrossRef]
- Pouyat, D.; Couston, L.; Noire, M.H.; Davin, T.; Delage, J.; Bouzon, C.; Marty, P. Real time analysis by in line spectrophotometry using optical fibre: Application to nuclear fuel reprocessing solutions. In Proceedings of the RECOD 98.5. International Conference on Recycling, Conditioning and Disposal, Nice, France, 25–28 October 1998; pp. 905–911. [Google Scholar]
- Matsunaga, T.; Okochi, M. TiO2-mediated photochemical disinfection of Escherichia coli using optical fibers. Environ. Sci. Technol. 1995, 29, 501–505. [Google Scholar] [CrossRef]
- Westerhoff, P.; Zhao, Z.; Shapiro, N. Nanoparticle enabled optical fibers to side-emit germicidal ultraviolet light for biofilm control in water. In Proceedings of the Novel Optical Materials and Applications, Maastricht, The Netherlands, 24–28 July 2022; pp. 1–12. [Google Scholar]
- Yin, H.; Li, Y.; Xing, F.; Wu, B.; Zhou, Z.; Zhang, W. Hybrid acoustic, wireless optical and fiber-optic underwater cellular mobile communication networks. In Proceedings of the 2018 IEEE 18th International Conference on Communication Technology (ICCT), Chongqing, China, 8–11 October 2018; pp. 721–726. [Google Scholar]
- Quattrocchi, G.; Berri, P.C.; Dalla, M.V.; Maggiore, P. Optical fibers applied to aerospace systems prognostics: Design and development of new FBG-based vibration sensors. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1024, 12095. [Google Scholar] [CrossRef]
- Ladaci, A.; Girard, S.; Mescia, L.; Robin, T.; Laurent, A.; Cadier, B.; Boutillier, M.; Morana, A.; Di Francesca, D.; Ouerdane, Y.; et al. X-rays, γ-rays, electrons and protons radiation-induced changes on the lifetimes of Er3+ and Yb3+ ions in silica-based optical fibers. J. Lumin. 2018, 195, 402–407. [Google Scholar] [CrossRef]
- Girard, S.; Keurinck, J.; Ouerdane, Y.; Meunier, J.P.; Boukenter, A.; Derep, J.L.; Azais, B.; Charre, P.; Vie, M. Pulsed X-ray and/spl gamma/rays irradiation effects on polarization-maintaining optical fibers. IEEE Trans. Nucl. Sci. 2004, 51, 2740–2746. [Google Scholar] [CrossRef]
- Girard, S.; Baggio, J.; Bisutti, J. 14-MeV Neutron, γ-Ray, and Pulsed X-Ray Radiation-Induced Effects on Multimode Silica-Based Optical Fibers. IEEE Trans. Nucl. Sci. 2006, 53, 3750–3757. [Google Scholar] [CrossRef]
- Prajzler, V.; Masopoustova, K.; Sarsounova, Z. Gamma radiation effects on plastic optical fibers. Opt. Fiber Technol. 2022, 72, 102995. [Google Scholar] [CrossRef]
- Pacchioni, G.; Skuja, L.; Griscom, D.L. Defects in SiO2 and Related Dielectrics: Science and Technology; Springer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Griscom, D.L.; Levy, P.W. Nature of defects and defect generation in optical glasses. In Radiation Effects on Optical Materials; SPIE: Albuquerque, NM, USA, 1985; pp. 38–59. [Google Scholar]
- Wang, B.; Cao, C.; Xing, Y.B.; Chen, G.; Dai, N.L.; Li, H.Q.; Peng, J.G.; Li, J.Y. Research Status on Radiation Performance and Radiation Resistance Technology of Rare-Earth-Doped Fibers. Laser Optoelectron. Prog. 2021, 58, 150–169. [Google Scholar] [CrossRef]
- Wang, Z.L.; Cheng, L.F. Irradiation Effects and Irradiation Resistance Modification of Glasses. Mater. Rep. 2017, 31, 94–99. [Google Scholar] [CrossRef]
- Nicoletta, C.; Eubanks, A. Effect of simulated space radiation on selected optical materials. Appl. Opt. 1972, 11, 1365–1370. [Google Scholar] [CrossRef] [PubMed]
- Xing, R.X. Study on Irradiance Resistance of Erbium-Doped Silicate Glass and Its Fiber. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2016. [Google Scholar]
- Griscom, D.L. Self-trapped holes in amorphous silicon dioxide. Phys. Rev. B 1989, 40, 4224. [Google Scholar] [CrossRef]
- Johnston, A.H. Radiation damage of electronic and optoelectronic devices in space. In Proceedings of the 4th International Workshop on Radiation Effects on Semiconductor Devices for Space Application, Tsukuba, Japan, 11–13 October 2000; pp. 11–13. [Google Scholar]
- Holcomb, D.E.; Miller, D.W. A comparison of neutron and gamma damage effects on silica glass in a nuclear reactor radiation environment. J. Nucl. Mater. 1993, 203, 136–150. [Google Scholar] [CrossRef]
- Shao, C.Y.; Yu, C.L.; Hu, L.L. Radiation-Resistant Active Fibers for Space Applications. Chin. J. Lasers 2020, 47, 224–252. [Google Scholar] [CrossRef]
- Luo, W.Y. Study on the Formation Mechanism of Radiation-Induced Defects in Quartz Fiber Materials. Doctoral Thesis, Shanghai University, Shanghai, China, 2014. [Google Scholar]
- Imai, H.; Hirashima, H. Intrinsic-and extrinsic-defect formation in silica glasses by radiation. J. Non-Cryst. Solids 1994, 179, 202–213. [Google Scholar] [CrossRef]
- Suratwala, T.; Steele, W.; Feit, M.; Moreno, K.; Stadermann, M.; Fair, J.; Chen, K.; Nikroo, A.; Youngblood, K.; Wu, K. Polishing and local planarization of plastic spherical capsules using tumble finishing. Appl. Surf. Sci. 2012, 261, 679–689. [Google Scholar] [CrossRef]
- Chai, Y.; Zhu, M.; Xing, H.; Wang, H.; Cui, Y.; Shao, J. Multilayer deformation planarization by substrate pit suturing. Opt. Lett. 2016, 41, 3403–3406. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Yang, H.; Liu, Q.; Zhao, L.; Liu, Z.; Liu, H.; Wang, T.; Xiao, Y.; Hu, K.; Chen, M.; et al. Characterization of manufacturing-induced surface scratches and their effect on laser damage resistance performance of diamond fly-cut KDP crystal. Results Phys. 2019, 15, 102753. [Google Scholar] [CrossRef]
- Esqueda-Barrón, Y.; Herrera, M.; Camacho-López, S. ZnO synthesized in air by fs laser irradiation on metallic Zn thin films. Appl. Surf. Sci. 2018, 439, 681–688. [Google Scholar] [CrossRef]
- Sun, L.; Liu, H.; Huang, J.; Ye, X.; Xia, H.; Li, Q.; Jiang, X.; Wu, W.; Yang, L.; Zheng, W. Reaction ion etching process for improving laser damage resistance of fused silica optical surface. Opt. Express 2016, 24, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yan, H.; Yang, K.; Yao, C.; Wang, Z.; Zou, X.; Yan, C.; Yuan, X.; Ju, X.; Yang, L. Surface molecular structure defects and laser-induced damage threshold of fused silica during a manufacturing process. Sci. Rep. 2017, 7, 17870. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Shao, T.; Zhou, X.; Li, W.; Li, F.; Ye, X.; Huang, J.; Chen, S.; Li, B.; Yang, L.; et al. Understanding the effect of HF-based wet shallow etching on optical performance of reactive-ion-etched fused silica optics. RSC Adv. 2021, 11, 29323–29332. [Google Scholar] [CrossRef] [PubMed]
- Girard, S.; Kuhnhenn, J.; Gusarov, A.; Brichard, B.; Van Uffelen, M.; Ouerdane, Y.; Boukenter, A.; Marcandella, C. Radiation effects on silica-based optical fibers: Recent advances and future challenges. IEEE Trans. Nucl. Sci. 2013, 60, 2015–2036. [Google Scholar] [CrossRef]
- Williams, R.T. Nature of defects and defect generation in optical crystals. In Radiation Effects on Optical Materials; SPIE: Albuquerque, NM, USA, 1985; pp. 25–37. [Google Scholar]
- Morita, Y.; Kawakami, W. Dose rate effect on radiation induced attenuation of pure silica core optical fibres. IEEE Trans. Nucl. Sci. 1989, 36, 584–590. [Google Scholar] [CrossRef]
- Griscom, D.; Gingerich, M.; Friebele, E. Radiation-induced defects in glasses: Origin of power-law dependence of concentration on dose. Phys. Rev. Lett. 1993, 71, 1019. [Google Scholar] [CrossRef] [PubMed]
- Borgermans, P.; Brichard, B. Kinetic models and spectral dependencies of the radiation-induced attenuation in pure silica fibers. IEEE Trans. Nucl. Sci. 2002, 49, 1439–1445. [Google Scholar] [CrossRef]
- Rizzolo, S.; Boukenter, A.; Allanche, T.; Périsse, J.; Bouwmans, G.; El Hamzaoui, H.; Bigot, L.; Ouerdane, Y.; Cannas, M.; Bouazaoui, M.; et al. Optical frequency domain reflectometer distributed sensing using microstructured pure silica optical fibers under radiations. IEEE Trans. Nucl. Sci. 2016, 63, 2038–2045. [Google Scholar] [CrossRef]
- Di Francesca, D.; Girard, S.; Agnello, S.; Alessi, A.; Marcandella, C.; Paillet, P.; Richard, N.; Boukenter, A.; Ouerdane, Y.; Gelardi, F.M. Radiation response of ce-codoped germanosilicate and phosphosilicate optical fibers. IEEE Trans. Nucl. Sci. 2016, 63, 2058–2064. [Google Scholar] [CrossRef]
- Weber, W.J.; Ewing, R.C.; Angell, C.A.; Arnold, G.W.; Cormack, A.N.; Delaye, J.M.; Griscom, D.L.; Hobbs, L.W.; Navrotsky, A.; Price, D.L. Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition. J. Mater. Res. 1997, 12, 1948–1978. [Google Scholar] [CrossRef]
- Nürnberg, F.; Kühn, B.; Langner, A.; Altwein, M.; Schötz, G.; Takke, R.; Thomas, S.; Vydra, J. Bulk damage and absorption in fused silica due to high-power laser applications. In Laser-Induced Damage in Optical Materials; SPIE: Boulder, CO, USA, 2015; pp. 354–363. [Google Scholar]
- Kordas, G.; Camara, B.; Oel, H.J. Electron spin resonance studies of radiation damage in silicate glasses. J. Non-Cryst. Solids 1982, 50, 79–95. [Google Scholar] [CrossRef]
- Du, J.S.; Wu, J.H.; Zhao, L.L.; Song, L.X. Coloration of Glasses Induced by Space Ionizing Radiation. J. Inorg. Mater. 2012, 27, 411–416. [Google Scholar] [CrossRef]
- Prabhu, N.S.; Somashekarappa, H.M.; Sayyed, M.; Osman, H.; Alamri, S.; Khandaker, M.U.; Kamath, S.D. Structural and optical modifications in the BaO-ZnO-LiF-B2O3-Yb2O3 glass system after γ-irradiation. Materials 2021, 14, 6955. [Google Scholar] [CrossRef] [PubMed]
- Griscom, D.; Gingerich, M.; Friebele, E. Model for the dose, dose-rate and temperature dependence of radiation-induced loss in optical fibers. IEEE Trans. Nucl. Sci. 1994, 41, 523–527. [Google Scholar] [CrossRef]
- Henschel, H.; Koehn, O.; Schmidt, H.U. Influence of dose rate on radiation-induced loss in optical fibers. In Optical Systems in Adverse Environments; SPIE: Singapore, 1991; pp. 49–63. [Google Scholar]
- Friebele, E.J.; Askins, C.G.; Gingerich, M.E. Effect of low dose rate irradiation on doped silica core optical fibers. Appl. Opt. 1984, 23, 4202–4208. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, A.; Tighe, W.; Bartolick, J.; Morgan, P. Radiation effects on heated optical fibers. Rev. Sci. Instrum. 1997, 68, 632–635. [Google Scholar] [CrossRef]
- Girard, S.; Marcandella, C.; Morana, A.; Perisse, J.; Di Francesca, D.; Paillet, P.; Macé, J.R.; Boukenter, A.; Léon, M.; Gaillardin, M.; et al. Combined high dose and temperature radiation effects on multimode silica-based optical fibers. IEEE Trans. Nucl. Sci. 2013, 60, 4305–4313. [Google Scholar] [CrossRef]
- Henschel, H.; Kohn, O. Regeneration of irradiated optical fibres by photobleaching. IEEE Trans. Nucl. Sci. 2000, 47, 699–704. [Google Scholar] [CrossRef]
- Borgermans, P.; Noel, M. Multiple wavelength analysis of radiation induced attenuation on optical fibres: A novel approach in fibre optic dosimetry. In Proceedings of the IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going, St. Paul, MN, USA, 18–21 May 1998; pp. 953–956. [Google Scholar]
- Regnier, E.; Flammer, I.; Girard, S.; Gooijer, F.; Achten, F.; Kuyt, G. Low-dose radiation-induced attenuation at infrared wavelengths for P-doped, Ge-doped and pure silica-core optical fibres. IEEE Trans. Nucl. Sci. 2007, 54, 1115–1119. [Google Scholar] [CrossRef]
- Girard, S.; Boukenter, A.; Ouerdane, Y.; Meunier, J.P.; Keurinck, J. Properties of phosphorus-related defects induced by γ-rays and pulsed X-ray irradiation in germanosilicate optical fibers. J. Non-Cryst. Solids 2003, 322, 78–83. [Google Scholar] [CrossRef]
- Brichard, B.; Agnello, S.; Nuccio, L.; Dusseau, L. Comparison Between Point Defect Generation by γ-rays in Bulk and Fibre Samples of High Purity Amorphous SiO2. IEEE Trans. Nucl. Sci. 2008, 55, 2121–2125. [Google Scholar] [CrossRef]
- Girard, S.; Marcandella, C.; Alessi, A.; Boukenter, A.; Ouerdane, Y.; Richard, N.; Paillet, P.; Gaillardin, M.; Raine, M. Transient radiation responses of optical fibers: Influence of MCVD process parameters. IEEE Trans. Nucl. Sci. 2012, 59, 2894–2901. [Google Scholar] [CrossRef]
- Origlio, G.; Cannas, M.; Girard, S.; Boscaino, R.; Boukenter, A.; Ouerdane, Y. Influence of the drawing process on the defect generation in multistep-index germanium-doped optical fibers. Opt. Lett. 2009, 34, 2282–2284. [Google Scholar] [CrossRef] [PubMed]
- Kuhnhenn, J.; Henschel, H.; Weinand, U. Influence of coating material, cladding thickness, and core material on the radiation sensitivity of pure silica core step-index fibers. In Proceedings of the 2005 8th European Conference on Radiation and Its Effects on Components and Systems, Cap d’Agde, France, 19–23 September 2005. [Google Scholar]
- Vecchi, G.L.; Di Francesca, D.; Sabatier, C.; Girard, S.; Alessi, A.; Guttilla, A.; Robin, T.; Kadi, Y.; Brugger, M. Infrared radiation induced attenuation of radiation sensitive optical fibers: Influence of temperature and modal propagation. Opt. Fiber Technol. 2020, 55, 102166. [Google Scholar] [CrossRef]
- Giacomazzi, L.; Martin-Samos, L.; Boukenter, A.; Ouerdane, Y.; Girard, S.; Alessi, A.; De Gironcoli, S.; Richard, N. Photoactivated processes in optical fibers: Generation and conversion mechanisms of twofold coordinated Si and Ge atoms. Nanotechnology 2017, 28, 195202. [Google Scholar] [CrossRef]
- Uchino, T.; Yoko, T. Density functional theory of structural transformations of oxygen-deficient centers in amorphous silica during hole trapping: Structure and formation mechanism of the Eγ′ center. Phys. Rev. B 2006, 74, 125203. [Google Scholar] [CrossRef]
- Uchino, T.; Takahashi, M.; Yoko, T. Structure and generation mechanism of the peroxy-radical defect in amorphous silica. Phys. Rev. Lett. 2001, 86, 4560. [Google Scholar] [CrossRef] [PubMed]
- Uchino, T.; Takahashi, M.; Yoko, T. Formation and decay mechanisms of electron–hole pairs in amorphous SiO2. Appl. Phys. Lett. 2002, 80, 1147–1149. [Google Scholar] [CrossRef]
- Devine, R.A.B.; Duraud, J.P.; Dooryhee, E. Structure and Imperfections in Amorphous and Crystalline Silicon Dioxide; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2000. [Google Scholar]
- Kameyama, A.; Yokotani, A.; Kurosawa, K. Generation and erasure of second-order optical nonlinearities in thermally poled silica glasses by control of point defects. JOSA B 2002, 19, 2376–2383. [Google Scholar] [CrossRef]
- Girard, S.; Alessi, A.; Richard, N.; Martin-Samos, L.; De Michele, V.; Giacomazzi, L.; Agnello, S.; Di Francesca, D.; Morana, A.; Winkler, B.; et al. Overview of radiation induced point defects in silica-based optical fibers. Rev. Phys. 2019, 4, 100032. [Google Scholar] [CrossRef]
- O’Keeffe, S.; Lewis, E.; Santhanam, A.; Rolland, J.P. Variable sensitivity online optical fibre radiation dosimeter. In Proceedings of the SENSORS, Christchurch, New Zealand, 25–28 October 2009; pp. 787–790. [Google Scholar]
- Chapalo, I.; Gusarov, A.; Ioannou, A.; Pospori, A.; Chah, K.; Nan, Y.G.; Kalli, K.; Mégret, P. Online gamma radiation monitoring using few-mode polymer CYTOP fiber Bragg gratings. Sensors 2022, 23, 39. [Google Scholar] [CrossRef]
- Golant, K.M. Bulk silicas prepared by low pressure plasma CVD: Formation of structure and point defects. In Defects in SiO2 and Related Dielectrics: Science and Technology; Pacchioni, G., Skuja, L., Griscom, D.L., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 427–452. [Google Scholar]
- Piao, F.; Oldham, W.G.; Haller, E.E. Ultraviolet-induced densification of fused silica. J. Appl. Phys. 2000, 87, 3287–3293. [Google Scholar] [CrossRef]
- Blanco, S.G.; Glidle, A.; Cooper, J.M.; De La Rue, R.M.; Jacqueline, A.S.; Poumellec, B.; Aitchison, J.S. Characterization of the densification induced by electron-beam irradiation of ge-doped silica for the fabrication of integrated optical circuits. In Proceedings of the 2002 IEEE/LEOS Workshop on Fibre and Optical Passive Components, Glasgow, UK, 6–7 June 2002; pp. 17–23. [Google Scholar]
- Salleo, A.; Taylor, S.T.; Martin, M.C.; Panero, W.R.; Jeanloz, R.; Sands, T.; Génin, F.Y. Laser-driven formation of a high-pressure phase in amorphous silica. Nat. Mater. 2003, 2, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Buscarino, G.; Agnello, S.; Gelardi, F. Structural modifications induced by electron irradiation in SiO2 glass: Local densification measurements. Europhys. Lett. 2009, 87, 26007. [Google Scholar] [CrossRef]
- Vigouroux, J.; Duraud, J.; Le Moel, A.; Le Gressus, C.; Griscom, D. Electron trapping in amorphous SiO2 studied by charge buildup under electron bombardment. J. Appl. Phys. 1985, 57, 5139–5144. [Google Scholar] [CrossRef]
- Wang, R.; Tai, N.; Saito, K.; Ikushima, A. Fluorine-doping concentration and fictive temperature dependence of self-trapped holes in SiO2 glasses. J. Appl. Phys. 2005, 98, 023701. [Google Scholar] [CrossRef]
- Sanada, K.; Kakuta, T. Method of Manufacturing Radiation-Resistant Optical Fiber. U.S. Patent No. 5,269,825, 14 December 1993. [Google Scholar]
- Sanada, K.; Shamoto, N.; Inada, K. Radiation resistance of fluorine-doped silica-core fibers. J. Non-Cryst. Solids 1994, 179, 339–344. [Google Scholar] [CrossRef]
- Wijnands, T.; Aikawa, K.; Kuhnhenn, J.; Ricci, D.; Weinand, U. Radiation tolerant optical fibers: From sample testing to large series production. J. Light. Technol. 2011, 29, 3393–3400. [Google Scholar] [CrossRef]
- Stajanca, P.; Krebber, K. Towards on-line radiation monitoring with perfluorinated polymer optical fibers. In Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS), Jeju, Republic of Korea, 24–28 April 2017; pp. 1–4. [Google Scholar]
- Lethien, C.; Loyez, C.; Vilcot, J.P.; Rolland, N. A multi-hop UWB radio over polymer fibre system for 60-GHz hybrid network. In Proceedings of the European Workshop on Photonic Solutions for Wireless, Access, and in House Networks, Duisburg, Germany, 18–20 May 2009; pp. 35–36. [Google Scholar]
- Chapalo, I.; Gusarov, A.; Kinet, D.; Chah, K.; Nan, Y.G.; Mégret, P. Postirradiation transmission characteristics of CYTOP fiber exposed by gamma radiation. IEEE Trans. Nucl. Sci. 2022, 69, 656–662. [Google Scholar] [CrossRef]
- Chapalo, I.; Guasarov, A.; Kinet, D.; Chah, K.; Nan, Y.G.; Megret, P. Long-term Transmission Characteristics of CYTOP Fiber Exposed to Gamma Radiation. EPJ Web Conf. 2021, 253, 06003. [Google Scholar] [CrossRef]
- Wijnands, T.; De Jonge, L.K.; Kuhnhenn, J.; Hoeffgen, S.K.; Weinand, U. Optical absorption in commercial single mode optical fibers in a high energy physics radiation field. IEEE Trans. Nucl. Sci. 2008, 55, 2216–2222. [Google Scholar] [CrossRef]
- Pal, A.; Dhar, A.; Ghosh, A.; Sen, R.; Hooda, B.; Rastogi, V.; Ams, M.; Fabian, M.; Sun, T.; Grattan, K. Sensors for harsh environment: Radiation resistant FBG sensor system. J. Light. Technol. 2017, 35, 3393–3398. [Google Scholar] [CrossRef]
- Stajanca, P.; Krebber, K. Radiation-induced attenuation of perfluorinated polymer optical fibers for radiation monitoring. Sensors 2017, 17, 1959. [Google Scholar] [CrossRef] [PubMed]
- Blanc, J.; Ricci, D.; Kuhnhenn, J.; Weinand, U.; Schumann, O.J. Irradiation of radiation-tolerant single-mode optical fibers at cryogenic temperature. J. Light. Technol. 2017, 35, 1929–1935. [Google Scholar] [CrossRef]
- Williams, G.M.; Putnam, M.A.; Askins, C.G.; Gingerich, M.E.; Friebele, E.J. Radiation-induced coloring of erbium-doped optical fibers. In Optical Materials Reliability and Testing: Benign and Adverse Environments; SPIE: Boston, MA, USA, 1993; pp. 274–283. [Google Scholar]
- Takahara, M.; Yokoo, T.; Gomi, H. Splice effects of Er-doped fiber in Er-doped fiber amplifiers. In Proceedings of the ICCS’94, Singapore, 14–18 November 1994; pp. 73–77. [Google Scholar]
- Fukuda, C.; Chigusa, Y.; Kashiwada, T.; Onishi, M.; Kanamori, H.; Okamoto, S. γ-ray irradiation durability of erbium-doped fibres. Electron. Lett. 1994, 30, 1342–1344. [Google Scholar] [CrossRef]
- Ladaci, A.; Girard, S.; Mescia, L.; Robin, T.; Laurent, A.; Cadier, B.; Boutillier, M.; Ouerdane, Y.; Boukenter, A. Optimized radiation-hardened erbium doped fiber amplifiers for long space missions. J. Appl. Phys. 2017, 121, 163104. [Google Scholar] [CrossRef]
- Williams, G.; Putnam, M.; Askins, C.; Gingerich, M.; Friebele, E. Radiation effects in erbium-doped optical fibres. Electron. Lett. 1992, 19, 1816–1818. [Google Scholar] [CrossRef]
- Rose, T.S.; Gunn, D.; Valley, G.C. Gamma and proton radiation effects in erbium-doped fiber amplifiers: Active and passive measurements. J. Light. Technol. 2001, 19, 1918–1923. [Google Scholar] [CrossRef]
- Girard, S.; Tortech, B.; Regnier, E.; Van Uffelen, M.; Gusarov, A.; Ouerdane, Y.; Baggio, J.; Paillet, P.; Ferlet-Cavrois, V.; Boukenter, A.; et al. Proton-and gamma-induced effects on erbium-doped optical fibers. IEEE Trans. Nucl. Sci. 2007, 54, 2426–2434. [Google Scholar] [CrossRef]
- Gusarov, A.; Van Uffelen, M.; Hotoleanu, M.; Thienpont, H.; Berghmans, F. Radiation sensitivity of EDFAs based on highly Er-doped fibers. J. Light. Technol. 2009, 27, 1540–1545. [Google Scholar] [CrossRef]
- Li, M.; Ma, J.; Tan, L.; Zhou, Y.; Yu, S.; Yu, J.; Che, C. Investigation of the irradiation effect on erbium-doped fiber amplifiers composed by different density erbium-doped fibers. Laser Phys. 2009, 19, 138–142. [Google Scholar] [CrossRef]
- Thomas, J.; Myara, M.; Troussellier, L.; Burov, E.; Pastouret, A.; Boivin, D.; Mélin, G.; Gilard, O.; Sotom, M.; Signoret, P. Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications. Opt. Express 2012, 20, 2435–2444. [Google Scholar] [CrossRef] [PubMed]
- Griscom, D.L. Fractal kinetics of radiation-induced point-defect formation and decay in amorphous insulators: Application to color centers in silica-based optical fibers. Phys. Rev. B 2001, 64, 174201. [Google Scholar] [CrossRef]
- Williams, G.M.; Wright, B.M.; Mack, W.D.; Friebele, E.J. Projecting the performance of erbium-doped fiber devices in a space radiation environment. In Optical Fiber Reliability and Testing; SPIE: Boston, MA, USA, 1999; pp. 271–280. [Google Scholar]
- Brichard, B.; Fernandez, A.F.; Ooms, H.; Berghmans, F. Gamma dose rate effect in erbium-doped fibers for space gyroscopes. In Proceedings of the 16th International Conference on Optical Fiber Sensors, Hamamatsu-shi, Japan, 24–26 April 2023; pp. 336–339. [Google Scholar]
- Gilard, O.; Thomas, J.; Troussellier, L.; Myara, M.; Signoret, P.; Burov, E.; Sotom, M. Theoretical explanation of enhanced low dose rate sensitivity in erbium-doped optical fibers. Appl. Opt. 2012, 51, 2230–2235. [Google Scholar] [CrossRef] [PubMed]
- Girard, S.; Laurent, A.; Pinsard, E.; Raine, M.; Robin, T.; Cadier, B.; Di Francesca, D.; Paillet, P.; Gaillardin, M.; Duhamel, O.; et al. Proton irradiation response of hole-assisted carbon coated erbium-doped fiber amplifiers. IEEE Trans. Nucl. Sci. 2014, 61, 3309–3314. [Google Scholar] [CrossRef]
- Jiao, Y.; Yang, Q.; Guo, M.; Ma, X.; Shao, C.; Yu, C.; Hu, L. Effect of the GeO2 content on the radiation resistance of Er3+-doped silica glasses and fibers. Opt. Mater. Express 2021, 11, 1885–1897. [Google Scholar] [CrossRef]
- Mady, F.; Benabdesselam, M.; Blanc, W. Thermoluminescence characterization of traps involved in the photodarkening of ytterbium-doped silica fibers. Opt. Lett. 2010, 35, 3541–3543. [Google Scholar] [CrossRef] [PubMed]
- Basu, C. Photodarkening in Ytterbium Doped Silica Fibers under 488 nm CW Irradiation. Masters Thesis, University of Southampton, Southampton, UK, 2010. [Google Scholar]
- D’Orazio, A.; De Sario, M.; Mescia, L.; Petruzzelli, V.; Prudenzano, F. Refinement of Er3+-doped hole-assisted optical fiber amplifier. Opt. Express 2005, 13, 9970–9981. [Google Scholar] [CrossRef] [PubMed]
- Urquhart, P. Review of rare earth doped fibre lasers and amplifiers. IEE Proc. J. 1988, 135, 385–407. [Google Scholar] [CrossRef]
- Ma, J.; Li, M.; Tan, L.; Zhou, Y.; Yu, S.; Ran, Q. Experimental investigation of radiation effect on erbium-ytterbium co-doped fiber amplifier for space optical communication in low-dose radiation environment. Opt. Express 2009, 17, 15571–15577. [Google Scholar] [CrossRef] [PubMed]
- Girard, S.; Ouerdane, Y.; Tortech, B.; Marcandella, C.; Robin, T.; Cadier, B.; Baggio, J.; Paillet, P.; Ferlet-Cavrois, V.; Boukenter, A.; et al. Radiation effects on ytterbium-and ytterbium/erbium-doped double-clad optical fibers. IEEE Trans. Nucl. Sci. 2009, 56, 3293–3299. [Google Scholar] [CrossRef]
- Dianov, E.; Golant, K.; Khrapko, R.; Tomashuk, A. Nitrogen doped silica core fibres: A new type of radiation-resistant fibre. Electron. Lett. 1995, 31, 1490–1491. [Google Scholar] [CrossRef]
- Bhatia, V.; Vengsarkar, A.M. Optical fiber long-period grating sensors. Opt. Lett. 1996, 21, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Dianov, E.M.; Kurkov, A.S.; Medvedkov, O.I.; Vasiliev, S.A. Photoinduced long-period fiber grating as a promising sensor element. In Proceedings of the 10th European Conference on Solid-State Transducers, Leuven, Belgium, 8–11 September 1996; pp. 1–5. [Google Scholar]
- Ferdinand, P.; Magne, S.; Marty, V.; Rougeault, S.; Bernage, P.; Douay, M.; Fertein, E.; Lahoreau, F.; Niay, P.; Bayon, J.F.; et al. Optical fibre Bragg grating sensors for structure monitoring within th nuclear power plants. In Optical Fibre Sensing and Systems in Nuclear Environments; SPIE: Mol, Belgium, 1994; pp. 11–20. [Google Scholar]
- Liang, L.; Jiang, D.S.; Zhou, X.F.; Chen, D.X. Applications of Fiber Bragg Grating Sensors in Civil Engineering. J. Luoyang Instit. Technol. 2003, 2, 86–89. [Google Scholar] [CrossRef]
- Vasiliev, S.A.; Dianov, E.M.; Golant, K.M.; Medvedkov, O.I.; Tomashuk, A.L.; Karpov, V.I.; Grekov, M.V.; Kurkov, A.S.; Leconte, B.; Niay, P. Performance of Bragg and long-period gratings written in N- and Ge-doped silica fibers under/spl gamma/-radiation. In Proceedings of the RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems, Cannes, France, 15–19 September 1997; pp. 480–483. [Google Scholar]
- Girard, S.; Keurinck, J.; Boukenter, A.; Meunier, J.P.; Ouerdane, Y.; Azaıs, B.; Charre, P.; Vié, M. Gamma-rays and pulsed X-ray radiation responses of nitrogen-, germanium-doped and pure silica core optical fibers. Nucl. Instrum. Meth. Phys. Res. B 2004, 215, 187–195. [Google Scholar] [CrossRef]
- Skuja, L.; Trukhin, A.; Plaudis, A. Luminescence in germanium-doped glassy SiO2. Phys. Status Solidi A 1984, 84, K153–K157. [Google Scholar] [CrossRef]
- Trukhin, A.; Poumellec, B. Energy transport in silica to oxygen-deficient luminescence centers. Comparison with other luminescence centers in silica and α-quartz. Solid State Commun. 2004, 129, 285–289. [Google Scholar] [CrossRef]
- Trukhin, A.; Boukenter, A.; Ouerdane, Y.; Girard, S. γ-ray induced GeODC (II) centers in germanium doped α-quartz crystal. J. Non-Cryst. Solids 2011, 357, 3288–3291. [Google Scholar] [CrossRef]
- Kakuta, T.; Shikama, T.; Narui, M.; Sagawa, T. Behavior of optical fibers under heavy irradiation. Fusion Eng. Des. 1998, 41, 201–205. [Google Scholar] [CrossRef]
- Shikama, T.; Kakuta, T.; Shamoto, N.; Narui, M.; Sagawa, T. Behavior of developed radiation-resistant silica-core optical fibers under fission reactor irradiation. Fusion Eng. Des. 2000, 51, 179–183. [Google Scholar] [CrossRef]
- Benabdesselam, M.; Mady, F.; Girard, S.; Mebrouk, Y.; Duchez, J.B.; Gaillardin, M.; Paillet, P. Performance of Ge-doped optical fiber as a thermoluminescent dosimeter. IEEE Trans. Nucl. Sci. 2013, 60, 4251–4256. [Google Scholar] [CrossRef]
- Eronyan, M.; Devetyarov, D.; Reutskiy, A.; Untilov, A.; Aksarin, S.; Meshkovskiy, I.; Bisyarin, M.; Pechenkin, A. MCVD method for manufacturing polarization-maintaining and radiation resistant optical fiber with germanosilicate elliptical core. Mater. Lett. 2021, 301, 130316. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, R.; Zhao, H.; Liu, Y.H. Effect of CeO2 Content on Irradiation Resistance of Gallate Glass. Mater. Rep. 2023, 37, 52–55. [Google Scholar]
- Zu, C.K.; Chen, J.; Zhao, H.F.; Liu, Y.H.; Han, B.; Wang, H.X. Effect of Rare Earth Ions(Gd3+,Ce3+/Ce4+, Eu3+) on Luminescence of Tb3+ Doped Silicate Glasses. Glass Enamel 2009, 37, 1–5. [Google Scholar] [CrossRef]
- Kadono, K.; Itakura, N.; Akai, T.; Yamashita, M.; Yazawa, T. Effect of additive ions on the optical density and stability of the color centers induced by X-ray irradiation in soda-lime silicate glass. Nucl. Instrum. Meth. Phys. Res. B 2009, 267, 2411–2415. [Google Scholar] [CrossRef]
- Engholm, M.; Norin, L. Ytterbium-doped fibers co-doped with cerium: Next generation of fibers for high power fiber lasers? In Proceedings of the Fiber Lasers VII: Technology, Systems, and Applications, San Francisco, CA, USA, 23–28 January 2010; pp. 79–87. [Google Scholar]
- Koumvakalis, N. Defects in crystalline SiO2: Optical absorption of the aluminum-associated hole center. J. Appl. Phys. 1980, 51, 5528–5532. [Google Scholar] [CrossRef]
- Trukhin, A.; Teteris, J.; Fedotov, A.; Griscom, D.; Buscarino, G. Photosensitivity of SiO2–Al and SiO2–Na glasses under ArF (193 nm) laser. J. Non-Cryst. Solids 2009, 355, 1066–1074. [Google Scholar] [CrossRef]
- Agnello, S.; Boizot, B. Transient visible-UV absorption in beta irradiated silica. J. Non-Cryst. Solids 2003, 322, 84–89. [Google Scholar] [CrossRef]
- Alessi, A.; Guttilla, A.; Girard, S.; Agnello, S.; Cannas, M.; Robin, T.; Boukenter, A.; Ouerdane, Y. Radiation effects on aluminosilicate optical fibers: Spectral investigations from the ultraviolet to near-infrared domains. Phys. Status Solidi A 2019, 216, 1800485. [Google Scholar] [CrossRef]
- Alessi, A.; Guttilla, A.; Agnello, S.; Sabatier, C.; Robin, T.; Barnini, A.; Di Francesca, D.; Vecchi, G.L.; Cannas, M.; Boukenter, A.; et al. Near-IR Radiation-Induced Attenuation of Aluminosilicate Optical Fibers. Phys. Status Solidi A 2021, 218, 2000807. [Google Scholar] [CrossRef]
- West, R.; Buker, H.; Friebele, E.; Henschel, H.; Lyons, P. The use of optical time domain reflectometers to measure radiation-induced losses in optical fibers. J. Light. Technol. 1994, 12, 614–620. [Google Scholar] [CrossRef]
- Henschel, H.; Koerfer, M.; Kuhnhenn, J.; Weinand, U.; Wulf, F. Fibre optic sensor solutions for particle accelerators. In Proceedings of the 17th International Conference on Optical Fibre Sensors, Bruges, Belgium, 23–27 May 2005; pp. 515–518. [Google Scholar]
- Berghmans, F.; Brichard, B.; Fernandez, A.F.; Gusarov, A.; Uffelen, M.V.; Girard, S. An introduction to radiation effects on optical components and fiber optic sensors. In Optical Waveguide Sensing and Imaging; Bock, W.J., Gannot, I., Tanev, S., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 127–165. [Google Scholar]
- Faustov, A.; Gussarov, A.; Wuilpart, M.; Fotiadi, A.A.; Liokumovich, L.B.; Kotov, O.I.; Zolotovskiy, I.O.; Tomashuk, A.L.; Deschoutheete, T.; Mégret, P. Distributed optical fibre temperature measurements in a low dose rate radiation environment based on Rayleigh backscattering. In Optical Sensing and Detection II; SPIE: Brussels, Belgium, 2012; pp. 83–90. [Google Scholar]
- Faustov, A.; Gusarov, A.; Wuilpart, M.; Fotiadi, A.; Liokumovich, L.; Zolotovskiy, I.; Tomashuk, A.; De Schoutheete, T.; Megret, P. Comparison of gamma-radiation induced attenuation in Al-doped, P-doped and Ge-doped fibres for dosimetry. IEEE Trans. Nucl. Sci. 2013, 60, 2511–2517. [Google Scholar] [CrossRef]
- Di Francesca, D.; Girard, S.; Agnello, S.; Alessi, A.; Marcandella, C.; Paillet, P.; Ouerdane, Y.; Kadi, Y.; Brugger, M.; Boukenter, A. Combined Temperature Radiation Effects and Influence of Drawing Conditions on Phosphorous-Doped Optical Fibers. Phys. Status Solidi A 2019, 216, 1800553. [Google Scholar] [CrossRef]
- Di Francesca, D.; Vecchi, G.L.; Girard, S.; Morana, A.; Reghioua, I.; Alessi, A.; Hoehr, C.; Robin, T.; Kadi, Y.; Brugger, M. Qualification and calibration of single-mode phosphosilicate optical fiber for dosimetry at CERN. J. Light. Technol. 2019, 37, 4643–4649. [Google Scholar] [CrossRef]
- Vecchi, G.L.; Di Francesca, D.; Kadi, Y.; Ricci, D.; Brugger, M.; Campanella, C.; Alessi, A.; Ouerdane, Y.; Girard, S. In-situ regeneration of P-doped optical fiber dosimeter. Opt. Lett. 2020, 45, 5201–5204. [Google Scholar] [CrossRef] [PubMed]
- Girard, S.; Ouerdane, Y.; Bouazaoui, M.; Marcandella, C.; Boukenter, A.; Bigot, L.; Kudlinski, A. Transient radiation-induced effects on solid core microstructured optical fibers. Opt. Express 2011, 19, 21760–21767. [Google Scholar] [CrossRef]
- Girard, S.; Baggio, J.; Leray, J.L. Radiation-induced effects in a new class of optical waveguides: The air-guiding photonic crystal fibers. IEEE Trans. Nucl. Sci. 2005, 52, 2683–2688. [Google Scholar] [CrossRef]
- Nagasawa, K.; Hoshi, Y.; Ohki, Y.; Yahagi, K. Improvement of radiation resistance of pure silica core fibers by hydrogen treatment. Jpn. J. Appl. Phys. 1985, 24, 1224. [Google Scholar] [CrossRef]
- Griscom, D.L. Radiation hardening of pure-silica-core optical fibers by ultra-high-dose γ-ray pre-irradiation. J. Appl. Phys. 1995, 77, 5008–5013. [Google Scholar] [CrossRef]
- Ito, C.; Naito, H.; Nishimura, A.; Ohba, H.; Wakaida, I.; Sugiyama, A.; Chatani, K. Development of radiation-resistant optical fiber for application to observation and laser spectroscopy under high radiation dose. J. Nucl. Sci. Technol. 2014, 51, 944–950. [Google Scholar] [CrossRef]
- Shao, C.; Jiao, Y.; Lou, F.; Wang, M.; Zhang, L.; Feng, S.; Wang, S.; Chen, D.; Yu, C.; Hu, L. Enhanced radiation resistance of ytterbium-doped silica fiber by pretreating on a fiber preform. Opt. Mater. Express 2020, 10, 408–420. [Google Scholar] [CrossRef]
- Jiao, Y.; Yang, Q.; Zhu, Y.; Wang, F.; Zhang, L.; Wang, M.; Wang, S.; Shao, C.; Yu, C.; Hu, L. Improved radiation resistance of an Er-doped silica fiber by a preform pretreatment method. Opt. Express 2022, 30, 6236–6247. [Google Scholar] [CrossRef] [PubMed]
Fiber | [Er3+]aa | [Al2O3] |
---|---|---|
#1 | ~290 ppm | 10 wt.% |
#2 | ~240 ppm | 8 wt.% |
#2 | ~290 ppm | 7 wt.% |
Fiber #1 | χ (dBm−1Gy−1, 50 Mev) | χ (dBm−1Gy−1, 105 Mev) |
---|---|---|
3 mW | - | 1.1 × 10−2 |
23 mW | - | 1.1 × 10−2 |
54 mW | - | 1.1 × 10−2 |
Fiber #2 | χ (dBm−1Gy−1, 50 Mev) | χ (dBm−1Gy−1, 105 Mev) |
3 mW | 1.1 × 10−2 | 1.6 × 10−2 |
23 mW | 1.1 × 10−2 | 1.6 × 10−2 |
54 mW | 1.1 × 10−2 | 1.6 × 10−2 |
Fiber #3 | χ (dBm−1Gy−1, 50 Mev) | χ (dBm−1Gy−1, 105 Mev) |
3 mW | 9.6 × 10−3 | 1.1 × 10−2 |
23 mW | 9.4 × 10−3 | 1.1 × 10−2 |
54 mW | 8.8 × 10−3 | 1.2 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Chen, Q.; Zhou, J.; Cao, Z.; Li, T.; Liu, F.; Yang, Z.; Chang, S.; Zhou, K.; Ming, Y.; et al. Radiation Damage Mechanisms and Research Status of Radiation-Resistant Optical Fibers: A Review. Sensors 2024, 24, 3235. https://doi.org/10.3390/s24103235
Li J, Chen Q, Zhou J, Cao Z, Li T, Liu F, Yang Z, Chang S, Zhou K, Ming Y, et al. Radiation Damage Mechanisms and Research Status of Radiation-Resistant Optical Fibers: A Review. Sensors. 2024; 24(10):3235. https://doi.org/10.3390/s24103235
Chicago/Turabian StyleLi, Jicong, Qi Chen, Jia Zhou, Zhi Cao, Tianchi Li, Fang Liu, Zhongyuan Yang, Shangwen Chang, Keyuan Zhou, Yuzhou Ming, and et al. 2024. "Radiation Damage Mechanisms and Research Status of Radiation-Resistant Optical Fibers: A Review" Sensors 24, no. 10: 3235. https://doi.org/10.3390/s24103235
APA StyleLi, J., Chen, Q., Zhou, J., Cao, Z., Li, T., Liu, F., Yang, Z., Chang, S., Zhou, K., Ming, Y., Yan, T., & Zheng, W. (2024). Radiation Damage Mechanisms and Research Status of Radiation-Resistant Optical Fibers: A Review. Sensors, 24(10), 3235. https://doi.org/10.3390/s24103235