A Proposal for a Solar Position Sensor System with Multifiber Optical Cable
Abstract
:1. Introduction
2. Operation Principle
3. Materials and Methods
4. Results and Discussion
Description | Solar Tracking Error [°]/Accuracy [°] | Reference | |
---|---|---|---|
Collimating sensor | |||
A sunlight collimating pipe placed over the Position-Sensitive Device (PSD) surface. | 0.05/ | [42] | |
Arrangement of five photodiodes. One photodiode in the middle and four photodiodes bent to 30 degrees. | 5/0.1 | [43] | |
Sun-pointing sensor | |||
Four-quadrant Light-Dependent Resistors (LDR) and a cylinder | 0.134/- | [44] | |
Light is directed through a lens and five 2 mm holes, then focused onto a photodiode matrix to ascertain the sun’s position via computational processing. | 0.1/0.1 | [41] | |
The incident light is focused by a lens (F = 35 mm, D = 25 mm) onto a plane with a 7-multifiber bundle connected to photodiodes. | 0.003/- | Present Work | |
Tilted mount sensor | |||
A tilted mount photodetector with four quadrants, each containing a photodetector positioned at a 45°-45°-90° right triangle with dimensions b = 2 mm and a = 1 mm. A 1 mm diameter pinhole permits light entry into the sensor. | 1/- | [45] | |
Three identical LDRs placed in parallel and symmetrically to each side of the pyramid. | 1.67/- | [46] | |
Hybrid sensor | |||
Under the spherical glass dome cap, a CIGS layer is deposited. Under illumination, six electrodes pick up the generated photocurrent by the CIGS layer. The angle of the incident light is determined from the distribution of the photocurrents to the electrodes. | 1/- | [47] | |
Hybrid solar tracking device that uses four photo-sensors to track the sun when the solar radiation is higher than 400 W/m2. Otherwise, a GPS-based program uses an astronomical formula to track the sun. | 1/- | [48] | |
The sun position sensor, employing an 80 mm hemispherical geometry, integrated 17 TSL230R light intensity sensors within its structure, alongside a microcontroller and an AHRS sensor for altitude compensation, operating on the principle of light presence or absence to generate 3D transformation matrices. | 5/- | [49] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuentes-Morales, R.F.; Diaz-Ponce, A.; Peña-Cruz, M.I.; Rodrigo, P.M.; Valentín-Coronado, L.M.; Martell-Chavez, F.; Pineda-Arellano, C.A. Control algorithms applied to active solar tracking systems: A review. Sol. Energy 2020, 212, 203–219. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Design and construction of a one-axis sun-tracking system. Sol. Energy 1996, 57, 465–469. [Google Scholar] [CrossRef]
- de Sá Campos, M.H.; Tiba, C. npTrack: A n-position single axis solar tracker model for optimized energy collection. Energies 2021, 14, 925. [Google Scholar] [CrossRef]
- Badr, F.; Radwan, A.; Ahmed, M.; Hamed, A.M. Performance assessment of a dual-axis solar tracker for concentrator photovoltaic systems. Int. J. Energy Res. 2022, 46, 13424–13440. [Google Scholar] [CrossRef]
- Luque-Heredia, I.; Quéméré, G.; Cervantes, R.; Laurent, O.; Chiappori, E.; Chong, J.Y. The sun tracker in concentrator photovoltaics. In Next Generation of Photovoltaics: New Concepts; Springer: Berlin/Heidelberg, Germany, 2012; pp. 61–93. [Google Scholar]
- Amelia, A.; Irwan, Y.; Safwati, I.; Leow, W.; Mat, M.; Rahim, M.S.A. Technologies of solar tracking systems: A review. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Chennai, India, 16–17 September 2020; IOP Publishing: Bristol, UK, 2020; Volume 767, p. 012052. [Google Scholar]
- Lee, C.Y.; Chou, P.C.; Chiang, C.M.; Lin, C.F. Sun tracking systems: A review. Sensors 2009, 9, 3875–3890. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, M.; Effatnejad, R. A new design of dual-axis solar tracking system with LDR sensors by using the wheatstone bridge circuit. IEEE Sens. J. 2021, 21, 14915–14922. [Google Scholar] [CrossRef]
- Bakos, G.C. Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement. Renew. Energy 2006, 31, 2411–2421. [Google Scholar] [CrossRef]
- Racharla, S.; Rajan, K. Solar tracking system—A review. Int. J. Sustain. Eng. 2017, 10, 72–81. [Google Scholar]
- Sun, X.C.; Lu, H.Y.; Xue, X.C.; Shi, J.X.; Fu, Y. Adaptive compensation technique for CCD signal sampling positions in high-resolution remote sensing cameras. Guangxue Jingmi Gongcheng/Opt. Precis. Eng. 2020, 28, 973–978. [Google Scholar]
- Xu, X.; Wang, J.; Chong, H.; Gao, C.; Liang, H.; Hong, S. Error source analysis and compensation in test chain for dual axial analog sun sensor. Chin. Space Sci. Technol. 2019, 39, 19. [Google Scholar]
- Szolga, L.A.; Farnas, Z. Solar Panel Tracking System Using Optical Fiber. In Proceedings of the E3S Web of Conferences, Yogyakarta, Indonesia, 7–8 September 2020; EDP Sciences: Les Ulis, France, 2020; Volume 191, p. 01003. [Google Scholar]
- Sun, Q.; Gutiérrez, J.L.R.; Yu, X. Deep Neural Network-Based 4-Quadrant Analog Sun Sensor Calibration. Space Sci. Technol. 2023, 3, 24. [Google Scholar] [CrossRef]
- Diriker, F.K.; Frias, A.; Keum, K.H.; Lee, R.S. Improved accuracy of a single-slit digital sun sensor design for cubesat application using sub-pixel interpolation. Sensors 2021, 21, 1472. [Google Scholar] [CrossRef] [PubMed]
- Tsuno, K.; Wada, S.; Ogawa, T.; Shimizu, T.; Hasegawa, T.; Kubo, M.; Murao, H.; Mizumoto, S.; Fujishima, S.; Toyonaga, K. UFSS (ultra fine sun sensor): CCD sun sensor with sub-arc second accuracy for the next solar observing satellite SOLAR-C. In Proceedings of the International Conference on Space Optics—ICSO 2018, Chania, Greece, 9–12 October 2018; SPIE: Bellingham, DC, USA, 2019; Volume 11180, pp. 1758–1766. [Google Scholar]
- Salgado-Conrado, L. A review on sun position sensors used in solar applications. Renew. Sustain. Energy Rev. 2018, 82, 2128–2146. [Google Scholar] [CrossRef]
- Sreelakshmi, K.; Ramamurthy, K. Review on fibre-optic-based daylight enhancement systems in buildings. Renew. Sustain. Energy Rev. 2022, 163, 112514. [Google Scholar] [CrossRef]
- Kavitha, T.; Pappa, C.K.; Shobana, R.; Raj, A.A.; Ahilan, A.; Veerasamy, B.; Gnanamalar, A.J. Advanced day lighting system using fiber optics. Opt. Quantum Electron. 2023, 55, 525. [Google Scholar] [CrossRef]
- Lv, Y.; Xia, L.; Li, M.; Wang, L.; Su, Y.; Yan, J. Techno-economic evaluation of an optical fiber based hybrid solar lighting system. Energy Convers. Manag. 2020, 225, 113399. [Google Scholar] [CrossRef]
- Al-Mamun, M.; Kader, S.; Islam, M.; Khan, M. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 2019, 7, 103248. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, S.; Zhao, S.; Li, C.; Wang, R.; Cao, D.; Liu, G. Construction of Bi-assisted modified CdS/TiO2 nanotube arrays with ternary S-scheme heterojunction for photocatalytic wastewater treatment and hydrogen production. Fuel 2022, 322, 124163. [Google Scholar] [CrossRef]
- Wu, Y.; Zhong, L.; Yuan, J.; Xiang, W.; Xin, X.; Liu, H.; Luo, H.; Li, L.; Chen, M.; Zhong, D.; et al. Photocatalytic optical fibers for degradation of organic pollutants in wastewater: A review. Environ. Chem. Lett. 2021, 19, 1335–1346. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, L.; Dan, L. Design and Application of a New Sun Sensor Based on Optical Fiber. In Proceedings of the Electrical Engineering and Control: Selected Papers from the 2011 International Conference on Electric and Electronics (EEIC 2011), Nanchang, China, 20–22 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; Volume 2, pp. 661–667. [Google Scholar]
- Rativa, D.; Valente, D.; Gómez-Malagón, L.A.; Vohnsen, B. Solar Tracker Sensor Based on a Quadrant Optical Fiber Array. In Frontiers in Optics; Optica Publishing Group: Washington, DC, USA, 2015; p. FTh1E-3. [Google Scholar]
- Leandro, D.; Bravo, M.; Judez, A.; Mariñelarena, J.; Falcone, F.; Loayssa, A.; Lopez-Amo, M.; Moriana, I.; Jimenez, S. In-field Torsion Measurements on Solar Trackers Using Fiber Optic Sensors. In Optical Fiber Sensors; Optica Publishing Group: Washington, DC, USA, 2020; p. Th4-35. [Google Scholar]
- Roy, J.S.; Morency, S.; Dugas, G.; Messaddeq, Y. Development of an extremely concentrated solar energy delivery system using silica optical fiber bundle for deployment of solar energy: Daylighting to photocatalytic wastewater treatment. Sol. Energy 2021, 214, 93–100. [Google Scholar] [CrossRef]
- Diaz, A.; Garrido, R.; Soto-Bernal, J. A filtered sun sensor for solar tracking in HCPV and CSP systems. IEEE Sens. J. 2018, 19, 917–925. [Google Scholar] [CrossRef]
- Saleh, B.E.; Teich, M.C. Fundamentals of Photonics; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Möhl, A.; Kaldun, S.; Kunz, C.; Müller, F.A.; Fuchs, U.; Gräf, S. Tailored focal beam shaping and its application in laser material processing. J. Laser Appl. 2019, 31, 42019. [Google Scholar] [CrossRef]
- Wheelwright, B.; Sulai, Y.; Geng, Y.; Luanava, S.; Choi, S.; Gao, W.; Gollier, J. Field of view: Not just a number. Digit. Opt. Immersive Displays 2018, 10676, 1067604. [Google Scholar]
- Schumacher, N.; Schmidt, M.; Reer, R.; Braumann, K.M. Peripheral vision tests in sports: Training effects and reliability of peripheral perception test. Int. J. Environ. Res. Public Health 2019, 16, 5001. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.; Mohanta, J.; Faiyaz Ahmed, M. Development of a dual-axis solar tracker for efficient sun energy harvesting. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2024. [Google Scholar] [CrossRef]
- Myers, D. Solar Radiation Resource Assessment for Renewable Energy Conversion; Technical Report; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2012.
- Boyes, W. Instrumentation Reference Book; Butterworth-Heinemann: Oxford, UK, 2009. [Google Scholar]
- Oliveira, F.T.V.; Gómez-Malagón, L.A. Caracterização de um fotodiodo de quatro quadrantes para seguidores solares. In Proceedings of the XXI Congresso Brasileiro de Automática—CBA, Vitória, Brazil, 3–7 October 2016; Volume 1, pp. 1–10, ISSN 2525-8311. [Google Scholar]
- Xie, N.; Theuwissen, A.J. Low-power high-accuracy micro-digital sun sensor by means of a CMOS image sensor. J. Electron. Imaging 2013, 22, 33030. [Google Scholar] [CrossRef]
- Romijn, J.; Vollebregt, S.; de Bie, V.G.; Middelburg, L.M.; El Mansouri, B.; van Zeijl, H.W.; May, A.; Erlbacher, T.; Leijtens, J.; Zhang, G.; et al. Microfabricated albedo insensitive sun position sensor system in silicon carbide with integrated 3D optics and CMOS electronics. Sens. Actuators A Phys. 2023, 354, 114268. [Google Scholar] [CrossRef]
- Romijn, J.; Şanseven, S.; Zhang, G.; Vollebregt, S.; Sarro, P.M. Angle sensitive optical sensor for light source tracker miniaturization. IEEE Sens. Lett. 2022, 6, 1–4. [Google Scholar] [CrossRef]
- Available online: https://solar-mems.com/wp-content/uploads/2023/12/ISSTX-03-MAN-104-Technical-Specifications.pdf (accessed on 30 April 2024).
- Song, J.; Zhu, Y.; Jin, Z.; Yang, Y. Daylighting system via fibers based on two-stage sun-tracking model. Sol. Energy 2014, 108, 331–339. [Google Scholar] [CrossRef]
- Luque-Heredia, I.; Cervantes, R.; Quemere, G. A sun tracking error monitor for photovoltaic concentrators. In Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 7–12 May 2006; IEEE: Piscataway, NJ, USA, 2006; Volume 1, pp. 706–709. [Google Scholar]
- Haryanti, M.; Halim, A.; Yusuf, A. Development of two axis solar tracking using five photodiodes. In Proceedings of the 2014 Electrical Power, Electronics, Communicatons, Control and Informatics Seminar (EECCIS), Malang, Indonesia, 27–28 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 40–44. [Google Scholar]
- Garrido, R.; Díaz, A. Cascade closed-loop control of solar trackers applied to HCPV systems. Renew. Energy 2016, 97, 689–696. [Google Scholar] [CrossRef]
- Welch, D.; Christen, J.B. MEMS optical position sensor for sun tracking. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1874–1878. [Google Scholar]
- Away, Y.; Ikhsan, M. Dual-axis sun tracker sensor based on tetrahedron geometry. Autom. Constr. 2017, 73, 175–183. [Google Scholar] [CrossRef]
- Böhnke, T.; Edoff, M.; Stenmark, L. Development of a MOEMS sun sensor for space applications. Sens. Actuators A Phys. 2006, 130, 28–36. [Google Scholar] [CrossRef]
- Lee, H.G.; Kim, S.S.; Kim, S.J.; Park, S.J.; Yun, C.w.; Im, G.p. Development of a hybrid solar tracking device using a GPS and a photo-sensor capable of operating at low solar radiation intensity. J. Korean Phys. Soc. 2015, 67, 980–985. [Google Scholar] [CrossRef]
- Barnes, J.; Liu, C.; Ariyur, K. A hemispherical sun sensor for orientation and geolocation. IEEE Sens. J. 2014, 14, 4423–4433. [Google Scholar] [CrossRef]
Indoor Condition | Outdoor Condition | |
---|---|---|
Range [°] | ±0.35 | ±0.6 |
Sensitivity [V/°] | 5.7 | 1.9 |
Resolution [°] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, F.; Cruz, G.; Barbosa, M.; Junior, F.; Lima, R.; Gómez-Malagón, L. A Proposal for a Solar Position Sensor System with Multifiber Optical Cable. Sensors 2024, 24, 3269. https://doi.org/10.3390/s24113269
Oliveira F, Cruz G, Barbosa M, Junior F, Lima R, Gómez-Malagón L. A Proposal for a Solar Position Sensor System with Multifiber Optical Cable. Sensors. 2024; 24(11):3269. https://doi.org/10.3390/s24113269
Chicago/Turabian StyleOliveira, Fernanda, Gustavo Cruz, Maria Barbosa, Fernando Junior, Ricardo Lima, and Luis Gómez-Malagón. 2024. "A Proposal for a Solar Position Sensor System with Multifiber Optical Cable" Sensors 24, no. 11: 3269. https://doi.org/10.3390/s24113269
APA StyleOliveira, F., Cruz, G., Barbosa, M., Junior, F., Lima, R., & Gómez-Malagón, L. (2024). A Proposal for a Solar Position Sensor System with Multifiber Optical Cable. Sensors, 24(11), 3269. https://doi.org/10.3390/s24113269