Instrumental Evaluation of the Effects of Vertebral Consolidation Surgery on Trunk Muscle Activations and Co-Activations in Patients with Multiple Myeloma: Preliminary Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
- age ≥ 18 years old;
- BMI < 28 kg/m2;
- historically confirmed diagnosis of MM accompanied by multiple vertebral lesions;
- clinical indication and eligibility to perform vertebroplasty procedure;
- performance status (ECOG) 0–2;
- life expectancy greater than three months at the time of enrolment;
- TC skeleton in its entirety low resolution at disease onset and/or follow-up;
- presence of spine pain with stiffness and functional impediment before vertebroplasty;
- absence of risk of spinal cord injury;
- no unstable vertebral injuries requiring orthopedic bracing;
- able to express appropriate consent to participation.
2.2. Pain Assessment
2.3. Instrumental Measurements
2.4. Experimental Procedure
2.5. Data Processing
2.5.1. sEMG Signal Processing
2.5.2. Events Identification in the Sit-to-Stand and Lifting Tasks
2.5.3. Co-Activation Function
2.5.4. Trunk Muscles Parameters
2.6. Statistical Analysis
3. Results
3.1. Pain Assessment Results
3.2. sEMG Parameters Results
3.3. Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, B.; Cai, L.; Zhou, F. Management of acute spinal cord compression in multiple myeloma. Crit. Rev. Oncol. Hematol. 2021, 160, 103205. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, N.A.; Alqahtani, M.; Alawbthani, N.S.; Thomas, A.; Alaskar, A. Chemotherapy-Induced Peripheral Neuropathy and its Impact on Health-Related Quality of Life among Multiple Myeloma Patients: A Single-Center Experience. Indian J. Palliat. Care 2020, 26, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.C.; Auclair, D.; Adam, S.J.; Agarwal, A.; Anderson, M.; Avet-Loiseau, H.; Bustoros, M.; Chapman, J.; Connors, D.E.; Dash, A.; et al. Minimal Residual Disease in Myeloma: Application for Clinical Care and New Drug Registration. Clin. Cancer Res. 2021, 27, 5195–5212. [Google Scholar] [CrossRef] [PubMed]
- Tosi, P. Diagnosis and treatment of bone disease in multiple myeloma: Spotlight on spinal involvement. Scientifica 2013, 2013, 104546. [Google Scholar] [CrossRef]
- Larsen, R.F.; Jarden, M.; Minet, L.R.; Frølund, U.C.; Möller, S.; Abildgaard, N. Physical function in patients newly diagnosed with multiple myeloma; a Danish cohort study. BMC Cancer 2020, 20, 169. [Google Scholar] [CrossRef]
- Cowan, A.J.; Green, D.J.; Kwok, M.; Lee, S.; Coffey, D.G.; Holmberg, L.A.; Tuazon, S.; Gopal, A.K.; Libby, E.N. Diagnosis and Management of Multiple Myeloma: A Review. JAMA 2022, 327, 464–477. [Google Scholar] [CrossRef]
- Wickstroem, L.A.; Carreon, L.; Lund, T.; Abildgaard, N.; Lorenzen, M.D.; Andersen, M.Ø. Vertebroplasty in patients with multiple myeloma with vertebral compression fractures: Protocol for a single-blind randomised controlled trial. BMJ Open 2021, 11, e045854. [Google Scholar] [CrossRef]
- McDonald, R.J.; Trout, A.T.; Gray, L.A.; Dispenzieri, A.; Thielen, K.R.; Kallmes, D.F. Vertebroplasty in multiple myeloma: Outcomes in a large patient series. AJNR Am. J. Neuroradiol. 2008, 29, 642–648. [Google Scholar] [CrossRef]
- Chen, L.H.; Hsieh, M.K.; Niu, C.C.; Fu, T.S.; Lai, P.L.; Chen, W.J. Percutaneous vertebroplasty for pathological vertebral compression fractures secondary to multiple myeloma. Arch. Orthop. Trauma Surg. 2012, 132, 759–764. [Google Scholar] [CrossRef]
- Anselmetti, G.C.; Manca, A.; Montemurro, F.; Hirsch, J.; Chiara, G.; Grignani, G.; Carnevale Schianca, F.; Capaldi, A.; Rota Scalabrini, D.; Sardo, E.; et al. Percutaneous vertebroplasty in multiple myeloma: Prospective long-term follow-up in 106 consecutive patients. Cardiovasc. Intervent. Radiol. 2012, 35, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Masala, S.; Anselmetti, G.C.; Marcia, S.; Massari, F.; Manca, A.; Simonetti, G. Percutaneous vertebroplasty in multiple myeloma vertebral involvement. J. Spinal Disord. Technol. 2008, 21, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.J.; Rogers, E.L.; Granata, K.P. Active trunk stiffness increases with co-contraction. J. Electromyogr. Kinesiol. 2006, 16, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Latash, M.L. Muscle coactivation: Definitions, mechanisms, and functions. J. Neurophysiol. 2018, 120, 88–104. [Google Scholar] [CrossRef] [PubMed]
- Chini, G.; Varrecchia, T.; Tatarelli, A.; Silvetti, A.; Fiori, L.; Draicchio, F.; Ranavolo, A. Trunk muscle co-activation and activity in one-and two-person lifting. Int. J. Ind. Ergon. 2022, 89, 103297. [Google Scholar] [CrossRef]
- Granata, K.P.; Marras, W.S. Cost-Benefit of Muscle Cocontraction in Protecting Against Spinal Instability. Spine 2000, 25, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Marras, W.S.; Mirka, G.A. Electromyographic studies of the lumbar trunk musculature during the generation of low-level trunk acceleration. J. Orthop. Res. 1993, 11, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Varrecchia, T.; Conforto, S.; De Nunzio, A.M.; Draicchio, F.; Falla, D.; Ranavolo, A. Trunk muscle coactivation in people with and without low back pain during fatiguing frequency-dependent lifting activities. Sensors 2022, 22, 1417. [Google Scholar] [CrossRef]
- Frost, G.; Dowling, J.; Dyson, K.; Bar-Or, O. Cocontraction in three age groups of children during treadmill locomotion. J. Electromyogr. Kinesiol. 1997, 7, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Brookham, R.L.; Middlebrook, E.E.; Grewal, T.J.; Dickerson, C.R. The utility of an empirically derived co-activation ratio for muscle force prediction through optimization. J. Biomech. 2011, 17, 1582–1587. [Google Scholar] [CrossRef]
- Lewek, M.D.; Rudolph, K.S.; Snyder-Mackler, L. Control of frontal plane knee laxity during gait in patients with medial compartment knee osteoarthritis. Osteoarthr. Cartil. 2004, 12, 745–751. [Google Scholar] [CrossRef]
- Childs, J.D.; Sparto, P.J.; Fitzgerald, G.K.; Bizzini, M.; Irrgang, J.J. Alterations in lower extremity movement and muscle activation patterns in individuals with knee osteoarthritis. Clin. Biomech. 2004, 19, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Griffin, T.M.; Guilak, F. The role of mechanical loading in the onset and progression of osteoarthritis. Exerc. Sport Sci. Rev. 2005, 33, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.; Blackburn, J.T.; Olcott, C.; Yu, B.; Weinhold, P. The impact of stochastic resonance electrical stimulation and knee sleeve on impulsive loading and muscle co-contraction during gait in knee osteoarthritis. Clin. Biomech. 2011, 26, 853–858. [Google Scholar] [CrossRef]
- Ranavolo, A.; Serrao, M.; Draicchio, F. Critical issues and imminent challenges in the use of sEMG in return-to-work rehabilitation of patients affected by neurological disorders in the epoch of Human–Robot collaborative technologies. Front. Neurol. 2020, 11, 572069. [Google Scholar] [CrossRef]
- Campanini, I.; Disselhorst-Klug, C.; Rymer, W.Z.; Merletti, R. Surface EMG in Clinical Assessment and Neurorehabilitation: Barriers Limiting Its Use. Front. Neurol. 2020, 11, 934. [Google Scholar] [CrossRef]
- Medved, V.; Medved, S.; Kovač, I. Critical Appraisal of Surface Electromyography (sEMG) as a Taught Subject and Clinical Tool in Medicine and Kinesiology. Front. Neurol. 2020, 11, 560363. [Google Scholar] [CrossRef] [PubMed]
- Al-Ayyad, M.; Owida, H.A.; De Fazio, R.; Al-Naami, B.; Visconti, P. Electromyography Monitoring Systems in Rehabilitation: A Review of Clinical Applications, Wearable Devices and Signal Acquisition Methodologies. Electronics 2023, 12, 1520. [Google Scholar] [CrossRef]
- Gates, D.H.; Walters, L.S.; Cowley, J.; Wilken, J.M.; Resnik, L. Range of Motion Requirements for Upper-Limb Activities of Daily Living. Am. J. Occup. Ther. 2016, 70, 7001350010p1–7001350010p10. [Google Scholar] [CrossRef]
- Bohannon, R.W. Daily sit-to-stands performed by adults: A systematic review. J. Phys. Ther. Sci. 2015, 27, 939–942. [Google Scholar] [CrossRef]
- Cleeland, C.S.; Ryan, K.M. Pain assessment: Global use of the Brief Pain Inventory. Ann. Acad. Med. Singap. 1994, 23, 129–138. [Google Scholar]
- Davis, R.B., III; Ounpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Barbero, M.; Merletti, R.; Rainoldi, A. Atlas of Muscle Innervation Zones: Understanding Surface Electromyography and Its Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Butler, H.L.; Newell, R.; Hubley-Kozey, C.L.; Kozey, J.W. The interpretation of abdominal wall muscle recruitment strategies change when the electrocardiogram (ECG) is removed from the electromyogram (EMG). J. Electromyogr. Kinesiol. 2009, 19, e102–e113. [Google Scholar] [CrossRef] [PubMed]
- Drake, J.D.; Callaghan, J.P. Elimination of electrocardiogram contamination from electromyogram signals: An evaluation of currently used removal techniques. J. Electromyogr. Kinesiol. 2006, 16, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Ranavolo, A.; Varrecchia, T.; Iavicoli, S.; Marchesi, A.; Rinaldi, M.; Serrao, M.; Conforto, S.; Cesarelli, M.; Draicchio, F. Surface electromyography for risk assessment in work activities designed using the “revised NIOSH lifting equation”. Int. J. Ind. Ergon. 2018, 68, 34–45. [Google Scholar] [CrossRef]
- Ranavolo, A.; Mari, S.; Conte, C.; Serrao, M.; Silvetti, A.; Iavicoli, S.; Draicchio, F. A new muscle co-activation index for biomechanical load evaluation in work activities. Ergonomics 2015, 58, 966–979. [Google Scholar] [CrossRef] [PubMed]
- Ranavolo, A.; Draicchio, F.; Varrecchia, T.; Silvetti, A.; Iavicoli, S. Wearable monitoring devices for biomechanical risk assessment at work: Current status and future challenges—A systematic review. Int. J. Environ. Res. Public Health 2018, 15, 2001, Erratum in Int. J. Environ. Res. Public Health 2018, 15, 2569. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, K.S.; Axe, M.J.; Snyder-Mackler, L. Dynamic stability after ACL injury: Who can hop? Knee Surg. Sports Traumatol. Arthrosc. 2000, 8, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Farina, D.; Merletti, R. Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions. J. Electromyogr. Kinesiol. 2000, 10, 337–349. [Google Scholar] [CrossRef]
- Granata, K.P.; Marras, W.S. An EMG-assisted model of trunk loading during free-dynamic lifting. J. Biomech. 1995, 28, 1309–1317. [Google Scholar] [CrossRef]
- De Luca, C.J. The use of surface electromyography in biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [Google Scholar] [CrossRef]
- Doheny, E.P.; Lowery, M.M.; Fitzpatrick, D.P.; O’Malley, M.J. Effect of elbow joint angle on force-EMG relationships in human elbow flexor and extensor muscles. J. Electromyogr. Kinesiol. 2008, 18, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Phinyomark, A.; Thongpanja, S.; Hu, H.; Phukpattaranont, P.; Limsakul, C. The usefulness of mean and median frequencies in electromyography analysis. Comput. Intell. Electromyogr. Anal.-Perspect. Curr. Appl. Futur. Chall. 2012, 23, 195–220. [Google Scholar]
- Wakeling, J.M.; Rozitis, A.I. Spectral properties of myoelectric signals from different motor units in the leg extensor muscles. J. Exp. Biol. 2004, 207 Pt 14, 2519–2528. [Google Scholar] [CrossRef]
- Larsson, B.; Kadi, F.; Lindvall, B.; Gerdle, B. Surface electromyography and peak torque of repetitive maximum isokinetic plantar flexions in relation to aspects of muscle morphology. J. Electromyogr. Kinesiol. 2006, 16, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Cifrek, M.; Medved, V.; Tonković, S.; Ostojić, S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech. 2009, 24, 327–340. [Google Scholar] [CrossRef]
- Serrao, M.; Pierelli, F.; Sinibaldi, E.; Chini, G.; Castiglia, S.F.; Priori, M.; Gimma, D.; Sellitto, G.; Ranavolo, A.; Conte, C.; et al. Progressive Modular Rebalancing System and Visual Cueing for Gait Rehabilitation in Parkinson’s Disease: A Pilot, Randomized, Controlled Trial with Crossover. Front. Neurol. 2019, 10, 902. [Google Scholar] [CrossRef] [PubMed]
- Gracovetsky, S. An hypothesis for the role of the spine in human locomotion: A challenge to current thinking. J. Biomed. Eng. 1985, 7, 205–216. [Google Scholar] [CrossRef]
- Neblett, R.; Mayer, T.G.; Brede, E.; Gatchel, R.J. The effect of prior lumbar surgeries on the flexion relaxation phenomenon and its responsiveness to rehabilitative treatment. Spine J. 2014, 14, 892–902. [Google Scholar] [CrossRef]
- Miscusi, M.; Serrao, M.; Ricciardi, L.; Conte, C.; Castiglia, S.F.; Ippolito, G.; Coppola, G.; Forcato, S.; Scerrati, A.; Raco, A. Gait analysis, trunk movements, and electromyographic patterns after minimally invasive spine surgery for lumbar instability: An observational prospective study. World Neurosurg. X 2023, 21, 100262. [Google Scholar] [CrossRef]
- Banno, T.; Yamato, Y.; Nojima, O.; Hasegawa, T.; Yoshida, G.; Arima, H.; Oe, S.; Ushirozako, H.; Yamada, T.; Ide, K.; et al. Comparison of the postoperative changes in trunk and lower extremity muscle activities between patients with adult spinal deformity and age-matched controls using surface electromyography. Spine Deform. 2022, 10, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Oppelt, K.; Hogan, A.; Stief, F.; Grützner, P.A.; Trinler, U. Movement Analysis in Orthopedics and Trauma Surgery—Measurement Systems and Clinical Applications. Z. Orthop. Unfall. 2020, 158, 304–317. [Google Scholar] [CrossRef] [PubMed]
- Chini, G.; Fiori, L.; Tatarelli, A.; Varrecchia, T.; Draicchio, F.; Ranavolo, A. Indexes for motor performance assessment in job integration/reintegration of people with neuromuscular disorders: A systematic review. Front. Neurol. 2022, 13, 968818. [Google Scholar] [CrossRef] [PubMed]
Items | Abbreviation | Pre | Post |
---|---|---|---|
Pain at its worst in the last 24 h | “pain max” | 5.8 ± 2.3 | 3.2 ± 2.7 |
Pain at its least in the last 24 h | “pain min” | 2.0 ± 1.3 | 0.8 ± 0.9 |
Pain on the average | “pain mean” | 4.4 ± 2.2 | 2.0 ± 1.8 |
Pain right now | “pain inst” | 3.4 ± 1.4 | 0.8 ± 0.7 |
Are you assuming a therapy for the pain? (yes: 1, no: 2) | “pain therapy” | 1.2 ± 0.4 | 1.6 ± 0.5 |
How, during the past 24 h, pain has interfered with: General Activity | “pain activity” | 4.8 ± 2.0 | 2 ± 2.3 |
How, during the past 24 h, pain has interfered with: Mood | “pain mood” | 2.4 ± 2.5 | 2.6 ± 2.9 |
How, during the past 24 h, pain has interfered with: Walking ability | “pain walking” | 6.2 ± 2.5 | 2.4 ± 3.0 |
How, during the past 24 h, pain has interfered with: Normal Work (includes both work outside the home and housework) | “pain work” | 5.2 ± 2.7 | 3.0 ± 2.8 |
How, during the past 24 h, pain has interfered with: Relations with other people | “pain relationship” | 4.0 ± 3.6 | 0.0 ± 0.0 |
How, during the past 24 h, pain has interfered with: Sleep | “pain sleep” | 3.8 ± 3.2 | 2.4 ± 3.2 |
How, during the past 24 h, pain has interfered with: Enjoyment of life | “pain enjoy” | 6.2 ± 3.3 | 3 ± 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montante, B.; Zampa, B.; Balestreri, L.; Ciancia, R.; Chini, G.; Ranavolo, A.; Rupolo, M.; Sawacha, Z.; Urbani, M.; Varrecchia, T.; et al. Instrumental Evaluation of the Effects of Vertebral Consolidation Surgery on Trunk Muscle Activations and Co-Activations in Patients with Multiple Myeloma: Preliminary Results. Sensors 2024, 24, 3527. https://doi.org/10.3390/s24113527
Montante B, Zampa B, Balestreri L, Ciancia R, Chini G, Ranavolo A, Rupolo M, Sawacha Z, Urbani M, Varrecchia T, et al. Instrumental Evaluation of the Effects of Vertebral Consolidation Surgery on Trunk Muscle Activations and Co-Activations in Patients with Multiple Myeloma: Preliminary Results. Sensors. 2024; 24(11):3527. https://doi.org/10.3390/s24113527
Chicago/Turabian StyleMontante, Barbara, Benedetta Zampa, Luca Balestreri, Rosanna Ciancia, Giorgia Chini, Alberto Ranavolo, Maurizio Rupolo, Zimi Sawacha, Martina Urbani, Tiwana Varrecchia, and et al. 2024. "Instrumental Evaluation of the Effects of Vertebral Consolidation Surgery on Trunk Muscle Activations and Co-Activations in Patients with Multiple Myeloma: Preliminary Results" Sensors 24, no. 11: 3527. https://doi.org/10.3390/s24113527
APA StyleMontante, B., Zampa, B., Balestreri, L., Ciancia, R., Chini, G., Ranavolo, A., Rupolo, M., Sawacha, Z., Urbani, M., Varrecchia, T., & Michieli, M. (2024). Instrumental Evaluation of the Effects of Vertebral Consolidation Surgery on Trunk Muscle Activations and Co-Activations in Patients with Multiple Myeloma: Preliminary Results. Sensors, 24(11), 3527. https://doi.org/10.3390/s24113527