An Automatic Lie Detection Model Using EEG Signals Based on the Combination of Type 2 Fuzzy Sets and Deep Graph Convolutional Networks
Abstract
:1. Introduction
- Providing an automatic lie detection system based on EEG signals with an accuracy of more than 95%.
- Collecting a standard database based on sentence questions and answers for the first time among previous research.
- Providing an automatic algorithm that uses a deep learning approach and type 2 fuzzy networks without needing a feature selection/extraction block diagram.
- The proposed model was evaluated in noisy environments, achieving accuracy above 90% in a wide range of different SNRs.
2. Materials and Methods
2.1. General Model of Generative Adversarial Networks (GANs)
2.2. General Model of Graph Convolutional Network
2.3. General Model of Type 2 Fuzzy (TF-2)
3. Proposed Model
3.1. Data Collection
3.2. Pre-Processing of EEG Data
3.3. Graph Design
3.4. Customized Architecture
3.5. Training, Validation, and Test Series
4. Experimental Results
4.1. Architecture Optimization Results
4.2. Results of Simulation
4.3. Comparison with Previous Algorithms and Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farrokhi, S.; Dargie, W.; Poellabauer, C. Human Activity Recognition Based on Wireless Electrocardiogram and Inertial Sensors. IEEE Sens. J. 2024, 1, 6490–6499. [Google Scholar] [CrossRef]
- Fathi, M.; Moghaddam, N.M.; Jahromi, S.N. A prognostic model for 1-month mortality in the postoperative intensive care unit. Surg. Today 2022, 52, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.A.; Can, J.; George, K. Deep Learning Applications in Brain Computer Interface Based Lie Detection. In Proceedings of the 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 8–11 March 2023; pp. 189–192. [Google Scholar]
- Kang, Q.; Li, F.; Gao, J. Exploring the Functional Brain Network of Deception in Source-Level EEG via Partial Mutual Information. Electronics 2023, 12, 1633. [Google Scholar] [CrossRef]
- Li, F.; Zhu, H.; Xu, J.; Gao, Q.; Guo, H.; Wu, S.; Li, X.; He, S. Lie detection using fNIRS monitoring of inhibition-related brain regions discriminates infrequent but not frequent liars. Front. Hum. Neurosci. 2018, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Boddu, V.; Kodali, P. PSO-based optimization for EEG data and SVM for efficient deceit identification. Soft Comput. 2023, 27, 9835–9843. [Google Scholar] [CrossRef]
- Delmas, H.; Denault, V.; Burgoon, J.K.; Dunbar, N.E. A review of automatic lie detection from facial features. J. Nonverbal Behav. 2024, 48, 93–136. [Google Scholar] [CrossRef]
- Kanna, R.K.; Kripa, N.; Vasuki, R. Systematic Design Of Lie Detector System Utilizing EEG Signals Acquisition. Int. J. Sci. Technol. Res. 2019, 9, 610–612. [Google Scholar]
- Abootalebi, V.; Moradi, M.H.; Khalilzadeh, M.A. A new approach for EEG feature extraction in P300-based lie detection. Comput. Methods Programs Biomed. 2009, 94, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Amir, S.; Ahmed, N.; Chowdhry, B.S. Lie detection in interrogations using digital signal processing of brain waves. In Proceedings of the 2013 3rd International Conference on Instrumentation, Communications, Information Technology and Biomedical Engineering (ICICI-BME), Bandung, Indonesia, 7–8 November 2013; pp. 209–214. [Google Scholar]
- Mohammed, I.J.; George, L.E. A Survey for Lie Detection Methodology Using EEG Signal Processing. J. Al-Qadisiyah Comput. Sci. Math. 2022, 14, 42–54. [Google Scholar] [CrossRef]
- Gao, J.; Tian, H.; Yang, Y.; Yu, X.; Li, C.; Rao, N. A novel algorithm to enhance P300 in single trials: Application to lie detection using F-score and SVM. PLoS ONE 2014, 9, e109700. [Google Scholar] [CrossRef]
- Simbolon, A.I.; Turnip, A.; Hutahaean, J.; Siagian, Y.; Irawati, N. An experiment of lie detection based EEG-P300 classified by SVM algorithm. In Proceedings of the 2015 International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT), Bandung, Indonesia, 29–30 October 2015; pp. 68–71. [Google Scholar]
- EskandariNasab, M.; Raeisi, Z.; Lashaki, R.A.; Najafi, H. A GRU–CNN model for auditory attention detection using microstate and recurrence quantification analysis. Sci. Rep. 2024, 14, 8861. [Google Scholar] [CrossRef] [PubMed]
- Yohan, K. Using EEG and Machine Learning to perform Lie Detection. Karbala Int. J. Mod. Sci. 2019, 10, 9. [Google Scholar]
- Dodia, S.; Edla, D.R.; Bablani, A.; Cheruku, R. Lie detection using extreme learning machine: A concealed information test based on short-time Fourier transform and binary bat optimization using a novel fitness function. Comput. Intell. 2020, 36, 637–658. [Google Scholar] [CrossRef]
- Baghel, N.; Singh, D.; Dutta, M.K.; Burget, R.; Myska, V. Truth identification from EEG signal by using convolution neural network: Lie detection. In Proceedings of the 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), Milan, Italy, 7–9 July 2020; pp. 550–553. [Google Scholar]
- Iqbal, T.; Ali, H. Generative adversarial network for medical images (MI-GAN). J. Med. Syst. 2018, 42, 231. [Google Scholar] [CrossRef]
- Zhang, S.; Tong, H.; Xu, J.; Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 2019, 6, 11. [Google Scholar] [CrossRef]
- Mohammadabadi, S.M.S.; Zawad, S.; Yan, F.; Yang, L. Speed Up Federated Learning in Heterogeneous Environment: A Dynamic Tiering Approach. arXiv 2023, arXiv:2312.05642. [Google Scholar]
- Kiaghadi, M.; Hoseinpour, P. University admission process: A prescriptive analytics approach. Artif. Intell. Rev. 2023, 56, 233–256. [Google Scholar] [CrossRef]
- Somers, L.P.; Bosten, J.M. Predicted effectiveness of EnChroma multi-notch filters for enhancing color perception in anomalous trichromats. Vis. Res. 2024, 218, 108381. [Google Scholar] [CrossRef] [PubMed]
- Iscioglu, E.; Bahrami, S. In Graphical user interface and graphic design and layout of ATUTOR LCMS. In ICERI2012 Proceedings, 5th International Conference of Education, Research and Innovation, Madrid, Spain, 19–21 November 2012; IATED: Valencia, Spain, 2012; pp. 3121–3127. [Google Scholar]
- Bahrami, S. Conceptual graphic design and interaction design of learning management system ATutor. Indian J. Sci. Technol. 2015, 263–269. [Google Scholar] [CrossRef]
- Nouleho, S.; Barth, D.; Quessette, F.; Weisser, M.-A.; Watel, D.; David, O. A new graph modelisation for molecule similarity. arXiv 2018, arXiv:1807.04528. [Google Scholar]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Van Esesn, B.C.; Awwal, A.A.S.; Asari, V.K. The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv 2018, arXiv:1803.01164. [Google Scholar]
- Mohammadabadi, S.M.S.; Liu, Y.; Canafe, A.; Yang, L. In Towards Distributed Learning of PMU Data: A Federated Learning based Event Classification Approach. In Proceedings of the 2023 IEEE Power & Energy Society General Meeting (PESGM), Orlando, FL, USA, 16–20 July 2023; pp. 1–5. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. In Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
Layer | Shape of Weight Tensor | Shape of Bias | Number of Parameters |
---|---|---|---|
Graph Conv1 | (S1, 10,000, 10,000) | 10,000 | 100,000,000 × S1 + 10,000 |
Graph Conv2 | (S2, 10,000, 5000) | 5000 | 50,000,000 × S2 + 5000 |
Graph Conv3 | (S3, 5000, 2500) | 2500 | 12,500,000 × S3 + 2500 |
Graph Conv4 | (S4, 2500, 1250) | 1250 | 3,125,000 × S4 + 1250 |
Graph Conv5 | (S5, 1250, 625) | 625 | 781,250 × S5 + 625 |
Graph Conv6 | (S6, 625, 312) | 312 | 195,000 × S6 + 312 |
Flattening Layer | 624 | 2 | 1248 |
Parameters | Values | Optimal Value |
---|---|---|
Batch Size in GAN | 4, 6, 8, 10, 12 | 10 |
Optimizer in GAN | Adam, SGD, Adamax | SGD |
Number of CNN Layers | 3, 4, 5 | 4 |
Learning Rate in GAN | 0.1, 0.01, 0.001, 0.0001 | 0.0001 |
Number of Graph Conv Layers | 2, 3, 4, 5, 6, 7 | 6 |
Batch Size in GCN | 8, 16, 32 | 16 |
Batch normalization | ReLU, Leaky-ReLU, TF-2 | TF-2 |
Learning Rate in GCN | 0.1, 0.01, 0.001, 0.0001, 0.00001 | 0.001 |
Dropout Rate | 0.1, 0.2, 0.3 | 0.1 |
Weight of optimizer | ||
Error function | MSE, Cross Entropy | Cross Entropy |
Optimizer in GCN | Adam, SGD, Adadelta, Adamax | Adadelta |
Measurement Index | Performance (%) |
---|---|
Accuracy | 98.2 |
Sensitivity | 98.2 |
Precision | 98.1 |
Specificity | 98.3 |
Kappa coefficient | 0.93 |
Research | The Method Used | ACC (%) |
---|---|---|
Abootalebi et al. [9] | P300 Waves | 86 |
Amir et al. [10] | Classical Features | 80 |
Mohammad et al. [11] | Brain Waves | 79 |
Gao et al. [12] | SVM | 96 |
Simbolon et al. [13] | ERP | 83 |
Saini et al. [14] | SVM | 98 |
Yohan et al. [15] | ANN | 86 |
Bagel et al. [16] | CNN | 84 |
Dodia et al. [17] | FFT-Hand Crafted Features | 88 |
Kang et al. [4] | ICA + FCN | 88.5 |
Boddu et al. [6] | PSO + SVM | 96.45 |
Our Model | GAN + Fuzzy Graph Convolution | 98.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmani, M.; Mohajelin, F.; Khaleghi, N.; Sheykhivand, S.; Danishvar, S. An Automatic Lie Detection Model Using EEG Signals Based on the Combination of Type 2 Fuzzy Sets and Deep Graph Convolutional Networks. Sensors 2024, 24, 3598. https://doi.org/10.3390/s24113598
Rahmani M, Mohajelin F, Khaleghi N, Sheykhivand S, Danishvar S. An Automatic Lie Detection Model Using EEG Signals Based on the Combination of Type 2 Fuzzy Sets and Deep Graph Convolutional Networks. Sensors. 2024; 24(11):3598. https://doi.org/10.3390/s24113598
Chicago/Turabian StyleRahmani, Mahsan, Fatemeh Mohajelin, Nastaran Khaleghi, Sobhan Sheykhivand, and Sebelan Danishvar. 2024. "An Automatic Lie Detection Model Using EEG Signals Based on the Combination of Type 2 Fuzzy Sets and Deep Graph Convolutional Networks" Sensors 24, no. 11: 3598. https://doi.org/10.3390/s24113598
APA StyleRahmani, M., Mohajelin, F., Khaleghi, N., Sheykhivand, S., & Danishvar, S. (2024). An Automatic Lie Detection Model Using EEG Signals Based on the Combination of Type 2 Fuzzy Sets and Deep Graph Convolutional Networks. Sensors, 24(11), 3598. https://doi.org/10.3390/s24113598