Use of Optical and Radar Imagery for Crop Type Classification in Africa: A Review
Abstract
:1. Introduction
2. Synthesis of Reviewed and Retained Publications
- i.
- Basic Query:
- ii.
- Focus on Optical Imagery:
- iii.
- Focus on Radar Imagery:
- iv.
- Expanded Query:
- v.
- Detailed Query Including Methodologies:
- vi.
- Comparative Studies or Reviews:
3. Results and Discussion
Year | Publication Topic | Images Source | Classification Algorithm | Country | Reference |
---|---|---|---|---|---|
2011 | Complex region land cover classification using coarse spatial resolution data to generate continuous and discrete maps | Landsat | Classification and regression tree (CART) | Republic of South Africa and Germany | [31] |
2014 | Integration of synthetic and optical aperture radar images to improve crop mapping in the northwestern area of Benin, located in West Africa | RapidEye dual-polarized (VV/VH) SAR (TerraSAR-X) | Random forest | Northwestern Benin, West Africa | [41] |
2015 | Enhancement of worldwide cropland data as a critical component for ensuring food security | Satellite imagery used by Geo-Wiki | Ethiopia | [42] | |
2017 | Satellite imagery-based evaluation of yield variation and its determinants in smallholder African systems | 1 m Terra Bella imagery | Random forest | Africa | [29] |
2017 | Classification of land cover and crop types using remote sensing data and deep learning | Landsat-8 Sentinel-1A | Convolutional neural networks (CNNs) | Africa | [13] |
2019 | Mapping of national-scale smallholder maize areas and yields using Google Earth Engine | Sentinel-1 Sentinel-2 | Random forest (RF) | Tanzania Kenya | [43] |
2020 | An examination of the capabilities of Sentinel-2 in estimating crop production within a smallholder agroforestry environment in Burkina Faso | Sentinel-2 | Linear regression modeling | Burkina Faso | [28] |
2020 | Assessment of the Sen2agri system under semi-arid circumstances: a case study of central Morocco’s Haouz Plain | Sentinel-2 for Agriculture (Sen2Agri) Sentinel-2 Time Series data | Random forest | Morocco | [37] |
2020 | Mapping the dynamics of large-scale and smallholder cropland in an emerging frontier of Mozambique using a flexible classification system and pixel-based composites | Landsat | Random forest | Mozambique | [21] |
2021 | Sentinel-2 imagery mapping of crop types and cropping systems in Nigeria | Sentinel-2 SkySat | Random forest | Nigeria | [18] |
2021 | Agricultural crop classification and status monitoring in central Morocco: a synergistic combination of the OBIA method and fused Landsat-Sentinel-2 data | Landsat-8 Sentinel-2 | Random forest classifier/OBIA | Morocco | [44] |
2021 | Mapping of croplands at the national scale utilising Google Earth Engine and phenological metrics, environmental covariates, and machine learning | Sentinel-2 | Random forest | Morocco | [30] |
2021 | Deep learning-based spatiotemporal combination approach for producing high-resolution NDVI time-series datasets | Sentinel-2 Landsat-8 | Random forest | Morocco | [33] |
2022 | Climate-smart agriculture in African countries: a review of strategies and impacts on smallholder farmers | - | - | Algeria, Senegal, Benin, Nigeria Zambia | [45] |
2023 | Utilising R to compute vegetation indices based on multispectral satellite images in the Khartoum region of Sudan, Northeast Africa. | Landsat-8 | Sudan | [46] | |
2023 | An application of GIS-based indicators to delineate the spatial aspect of food insecurity: An instance in Western Kenya | - | - | Kenya | [4] |
4. Conclusions and Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sadigov, R. Rapid Growth of the World Population and Its Socioeconomic Results. Sci. World J. 2022, 2022, 8110229. [Google Scholar] [CrossRef] [PubMed]
- Orynbaikyzy, A.; Gessner, U.; Mack, B.; Conrad, C. Crop Type Classification Using Fusion of Sentinel-1 and Sentinel-2 Data: Assessing the Impact of Feature Selection, Optical Data Availability, and Parcel Sizes on the Accuracies. Remote Sens. 2020, 12, 2779. [Google Scholar] [CrossRef]
- Almulhim, A.I.; Cobbinah, P.B. Urbanization-Environment Conundrum: An Invitation to Sustainable Development in Saudi Arabian Cities. Int. J. Sustain. Dev. World Ecol. 2023, 30, 359–373. [Google Scholar] [CrossRef]
- Mathenge, M.; Sonneveld, B.J.S.; Broerse, J.E.W. Mapping the spatial dimension of food insecurity using GIS-based indicators: A case of Western Kenya. Food Secur. 2023, 15, 243–260. [Google Scholar] [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop Type Classification Using a Combination of Optical and Radar Remote Sensing Data: A Review. Int. J. Remote Sens. 2019, 40, 6553–6595. [Google Scholar] [CrossRef]
- Ghamisi, P.; Gloaguen, R.; Atkinson, P.M.; Benediktsson, J.A.; Rasti, B.; Yokoya, N.; Wang, Q.; Hofle, B.; Bruzzone, L.; Bovolo, F.; et al. Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art. IEEE Geosci. Remote Sens. Mag. 2019, 7, 6–39. [Google Scholar] [CrossRef]
- Fisette, T.; Rollin, P.; Aly, Z.; Campbell, L.; Daneshfar, B.; Filyer, P.; Smith, A.; Davidson, A.; Shang, J.; Jarvis, I. AAFC annual crop inventory. In Proceedings of the 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013; pp. 270–274. [Google Scholar]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and Product Vision for Terrestrial Global Change Research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, X.; Zhao, C.; Qin, Z.; De Vroey, M.; Defourny, P. Evaluation of Crop Type Classification with Different High Resolution Satellite Data Sources. Remote Sens. 2021, 13, 911. [Google Scholar] [CrossRef]
- Dalla Mura, M.; Prasad, S.; Pacifici, F.; Gamba, P.; Chanussot, J.; Benediktsson, J.A. Challenges and Opportunities of Multimodality and Data Fusion in Remote Sensing. Proc. IEEE 2015, 103, 1585–1601. [Google Scholar] [CrossRef]
- Shelestov, A.; Kolotii, A.; Camacho, F.; Skakun, S.; Kussul, O.; Lavreniuk, M.; Kostetsky, O. Mapping of Biophysical Parameters Based on High Resolution EO Imagery for JECAM Test Site in Ukraine. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1733–1736. [Google Scholar]
- Kogan, F.; Kussul, N.; Adamenko, T.; Skakun, S.; Kravchenko, O.; Kryvobok, O.; Shelestov, A.; Kolotii, A.; Kussul, O.; Lavrenyuk, A. Winter Wheat Yield Forecasting in Ukraine Based on Earth Observation, Meteorological Data and Biophysical Models. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 192–203. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Belward, A.S.; Skøien, J.O. Who Launched What, When and Why; Trends in Global Land-Cover Observation Capacity from Civilian Earth Observation Satellites. ISPRS J. Photogramm. Remote. Sens. 2015, 103, 115–128. [Google Scholar] [CrossRef]
- Gomarasca, M.A.; Tornato, A.; Spizzichino, D.; Valentini, E.; Taramelli, A.; Satalino, G.; Vincini, M.; Boschetti, M.; Colombo, R.; Rossi, L.; et al. Sentinel for Applications in Agriculture. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 91–98. [Google Scholar] [CrossRef]
- Rustowicz, R.; Cheong, R.; Wang, L.; Ermon, S.; Burke, M.; Lobell, D.B. Semantic Segmentation of Crop Type in Africa: A Novel Dataset and Analysis of Deep Learning Methods. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Lowder, S.K.; Skoet, J.; Raney, T. The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef]
- Ibrahim, E.S.; Rufin, P.; Nill, L.; Kamali, B.; Nendel, C.; Hostert, P. Mapping Crop Types and Cropping Systems in Nigeria with Sentinel-2 Imagery. Remote Sens. 2021, 13, 3523. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; McCallum, I.; You, L.; Bun, A.; Moltchanova, E.; Duerauer, M.; Albrecht, F.; Schill, C.; Perger, C.; et al. Mapping Global Cropland and Field Size. Glob. Change Biol. 2015, 21, 1980–1992. [Google Scholar] [CrossRef] [PubMed]
- Carletto, C.; Jolliffe, D.; Banerjee, R. From Tragedy to Renaissance: Improving Agricultural Data for Better Policies. J. Dev. Stud. 2015, 51, 133–148. [Google Scholar] [CrossRef]
- Bey, A.; Jetimane, J.; Lisboa, S.N.; Ribeiro, N.; Sitoe, A.; Meyfroidt, P. Mapping Smallholder and Large-Scale Cropland Dynamics with a Flexible Classification System and Pixel-Based Composites in an Emerging Frontier of Mozambique. Remote Sens. Environ. 2020, 239, 111611. [Google Scholar] [CrossRef]
- Lemenkova, P.; Debeir, O. Multispectral Satellite Image Analysis for Computing Vegetation Indices by R in the Khartoum Region of Sudan, Northeast Africa. J. Imaging 2023, 9, 98. [Google Scholar] [CrossRef]
- Bégué, A.; Leroux, L.; Soumaré, M.; Faure, J.-F.; Diouf, A.A.; Augusseau, X.; Touré, L.; Tonneau, J.-P. Remote Sensing Products and Services in Support of Agricultural Public Policies in Africa: Overview and Challenges. Front. Sustain. Food Syst. 2020, 4, 58. [Google Scholar] [CrossRef]
- Hidalgo, F.; Quiñones-Ruiz, X.F.; Birkenberg, A.; Daum, T.; Bosch, C.; Hirsch, P.; Birner, R. Digitalization, Sustainability, and Coffee. Opportunities and Challenges for Agricultural Development. Agric. Syst. 2023, 208, 103660. [Google Scholar] [CrossRef]
- Deichmann, U.; Goyal, A.; Mishra, D. Will Digital Technologies Transform Agriculture in Developing Countries? Agric. Econ. 2016, 47, 21–33. [Google Scholar] [CrossRef]
- Ndung’u, N.S. Harnessing Africa’s digital potential: New tools for a new age. In Foresight Africa 2018 Report; Brookings Institutes: Washington, DC, USA, 2018; pp. 84–99. [Google Scholar]
- Smidt, H.J.; Jokonya, O. Factors Affecting Digital Technology Adoption by Small-Scale Farmers in Agriculture Value Chains (AVCs) in South Africa. Inf. Technol. Dev. 2022, 28, 558–584. [Google Scholar] [CrossRef]
- Karlson, M.; Ostwald, M.; Bayala, J.; Bazié, H.R.; Ouedraogo, A.S.; Soro, B.; Sanou, J.; Reese, H. The Potential of Sentinel-2 for Crop Production Estimation in a Smallholder Agroforestry Landscape, Burkina Faso. Front. Environ. Sci. 2020, 8, 85. [Google Scholar] [CrossRef]
- Burke, M.; Lobell, D.B. Satellite-Based Assessment of Yield Variation and Its Determinants in Smallholder African Systems. Proc. Natl. Acad. Sci. USA 2017, 114, 2189–2194. [Google Scholar] [CrossRef] [PubMed]
- Moumni, A.; Sebbar, B.; Simonneaux, V.; Ezzahar, J.; Lahrouni, A. Evaluation of Sen2agri System Over Semi-Arid Conditions: A Case Study Of The Haouz Plain In Central Morocco. In Proceedings of the 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunis, Tunisia, 9–11 March 2020; pp. 343–346. [Google Scholar]
- Htitiou, A.; Boudhar, A.; Chehbouni, A.; Benabdelouahab, T. National-Scale Cropland Mapping Based on Phenological Metrics, Environmental Covariates, and Machine Learning on Google Earth Engine. Remote Sens. 2021, 13, 4378. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global Land Cover Mapping from MODIS: Algorithms and Early Results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some Challenges in Global Land Cover Mapping: An Assessment of Agreement and Accuracy in Existing 1 Km Datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Htitiou, A.; Boudhar, A.; Benabdelouahab, T. Deep Learning-Based Spatiotemporal Fusion Approach for Producing High-Resolution NDVI Time-Series Datasets. Can. J. Remote. Sens. 2021, 47, 182–197. [Google Scholar] [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Ullmann, T.; Zoungrana, E. Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa. Remote Sens. 2014, 6, 6472–6499. [Google Scholar] [CrossRef]
- Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sens. 2015, 7, 12356–12379. [Google Scholar] [CrossRef]
- Jabir, B.; Falih, N. Digital Agriculture in Morocco, Opportunities and Challenges. In Proceedings of the 2020 IEEE 6th International Conference on Optimization and Applications (ICOA), Beni Mellal, Morocco, 20–21 April 2020; pp. 1–5. [Google Scholar]
- Nguyen, M.D.; Baez-Villanueva, O.M.; Bui, D.D.; Nguyen, P.T.; Ribbe, L. Harmonization of Landsat and Sentinel 2 for Crop Monitoring in Drought Prone Areas: Case Studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon). Remote Sens. 2020, 12, 281. [Google Scholar] [CrossRef]
- Eleftheriou, A.; Mouzourides, P.; Biskos, G.; Yiallouros, P.; Kumar, P.; Neophytou, M.K.A. The challenge of adopting mitigation and adaptation measures for the impacts of sand and dust storms in Eastern Mediterranean Region: A critical review. Mitig. Adapt. Strateg. Glob. Chang. 2023, 28, 33. [Google Scholar] [CrossRef]
- Omia, E.; Bae, H.; Park, E.; Kim, M.S.; Baek, I.; Kabenge, I.; Cho, B.-K. Remote Sensing in Field Crop Monitoring: A Comprehensive Review of Sensor Systems, Data Analyses and Recent Advances. Remote Sens. 2023, 15, 354. [Google Scholar] [CrossRef]
- Colditz, R.R.; Schmidt, M.; Conrad, C.; Hansen, M.C.; Dech, S. Land Cover Classification with Coarse Spatial Resolution Data to Derive Continuous and Discrete Maps for Complex Regions. Remote Sens. Environ. 2011, 115, 3264–3275. [Google Scholar] [CrossRef]
- Waldner, F.; Fritz, S.; Di Gregorio, A.; Defourny, P. Mapping Priorities to Focus Cropland Mapping Activities: Fitness Assessment of Existing Global, Regional and National Cropland Maps. Remote Sens. 2015, 7, 7959–7986. [Google Scholar] [CrossRef]
- Jin, Z.; Azzari, G.; You, C.; Di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder Maize Area and Yield Mapping at National Scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [Google Scholar] [CrossRef]
- Htitiou, A.; Boudhar, A.; Lebrini, Y.; Lionboui, H.; Chehbouni, A.; Benabdelouahab, T. Classification and Status Monitoring of Agricultural Crops in Central Morocco: A Synergistic Combination of OBIA Approach and Fused Landsat-Sentinel-2 Data. J. Appl. Remote. Sens. 2021, 15, 014504. [Google Scholar] [CrossRef]
- Ariom, T.O.; Dimon, E.; Nambeye, E.; Diouf, N.S.; Adelusi, O.O.; Boudalia, S. Climate-Smart Agriculture in African Countries: A Review of Strategies and Impacts on Smallholder Farmers. Sustainability 2022, 14, 11370. [Google Scholar] [CrossRef]
- Upadhyay, P.; Czerkawski, M.; Davison, C.; Cardona, J.; Macdonald, M.; Andonovic, I.; Michie, C.; Atkinson, R.; Papadopoulou, N.; Nikas, K.; et al. A Flexible Multi-Temporal and Multi-Modal Framework for Sentinel-1 and Sentinel-2 Analysis Ready Data. Remote Sens. 2022, 14, 1120. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef]
- Eva, H.D.; Belward, A.S.; De Miranda, E.E.; Di Bella, C.M.; Gond, V.; Huber, O.; Jones, S.; Sgrenzaroli, M.; Fritz, S. A Land Cover Map of South America: A Land Cover Map of South America. Glob. Change Biol. 2004, 10, 731–744. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a Global Land Cover Characteristics Database and IGBP DISCover from 1 Km AVHRR Data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Wulder, M.; White, J.; Cranny, M.; Hall, R.J.; Luther, J.; Beaudoin, A.; Goodenough, D.; Dechka, J. Monitoring Canada’s Forests. Part 1: Completion of the EOSD Land Cover Project. Can. J. Remote. Sens. 2008, 34, 549–562. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Goward, S.N.; Masek, J.G.; Irons, J.R.; Herold, M.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Landsat Continuity: Issues and Opportunities for Land Cover Monitoring. Remote Sens. Environ. 2008, 112, 955–969. [Google Scholar] [CrossRef]
- Chen, Y.; Gong, P. Clustering Based on Eigenspace Transformation—CBEST for Efficient Classification. ISPRS J. Photogramm. Remote Sens. 2013, 83, 64–80. [Google Scholar] [CrossRef]
- Frazier, P.S.; Page, K.J. Water Body Detection and Delineation with Landsat TM Data. Eng. Remote Sens. 2000, 66, 1461–1468. [Google Scholar]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping Global Urban Areas Using MODIS 500-m Data: New Methods and Datasets Based on ‘Urban Ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Radoux, J.; Lamarche, C.; Van Bogaert, E.; Bontemps, S.; Brockmann, C.; Defourny, P. Automated Training Sample Extraction for Global Land Cover Mapping. Remote Sens. 2014, 6, 3965–3987. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global Land Cover Mapping at 30m Resolution: A POK-Based Operational Approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Friedl, M.A.; Krankina, O.N.; Baccini, A.; Woodcock, C.E.; Sibley, A.; Sun, G.; Kharuk, V.; Elsakov, V. Hierarchical Mapping of Northern Eurasian Land Cover Using MODIS Data. Remote Sens. Environ. 2011, 115, 392–403. [Google Scholar] [CrossRef]
- Foody, G.M.; Boyd, D.S.; Sanchez-Hernandez, C. Mapping a Specific Class with an Ensemble of Classifiers. Int. J. Remote Sens. 2007, 28, 1733–1746. [Google Scholar] [CrossRef]
- Franklin, S.E.; Wulder, M.A. Remote Sensing Methods in Medium Spatial Resolution Satellite Data Land Cover Classification of Large Areas. Prog. Phys. Geogr. 2002, 26, 173–205. [Google Scholar] [CrossRef]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A Meta-Analysis of Remote Sensing Research on Supervised Pixel-Based Land-Cover Image Classification Processes: General Guidelines for Practitioners and Future Research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef]
- Glanz, H.; Carvalho, L.; Sulla-Menashe, D.; Friedl, M.A. A Parametric Model for Classifying Land Cover and Evaluating Training Data Based on Multi-Temporal Remote Sensing Data. ISPRS J. Photogramm. Remote Sens. 2014, 97, 219–228. [Google Scholar] [CrossRef]
- Hubert-Moy, L.; Cotonnec, A.; Le Du, L.; Chardin, A.; Perez, P. A Comparison of Parametric Classification Procedures of Remotely Sensed Data Applied on Different Landscape Units. Remote Sens. Environ. 2001, 75, 174–187. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. The Use of Small Training Sets Containing Mixed Pixels for Accurate Hard Image Classification: Training on Mixed Spectral Responses for Classification by a SVM. Remote Sens. Environ. 2006, 103, 179–189. [Google Scholar] [CrossRef]
- Bruzzone, L.; Demir, B. A review of modern approaches to classification of remote sensing data. In Land Use and Land Cover Mapping in Europe; Springer: Berlin/Heidelberg, Germany, 2014; pp. 127–143. [Google Scholar]
- McIver, D.K.; Friedl, M.A. Using Prior Probabilities in Decision-Tree Classification of Remotely Sensed Data. Remote Sens. Environ. 2002, 81, 253–261. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. Some Issues in the Classification of DAIS Hyperspectral Data. Int. J. Remote Sens. 2006, 27, 2895–2916. [Google Scholar] [CrossRef]
- Ghimire, B.; Rogan, J.; Galiano, V.R.; Panday, P.; Neeti, N. An Evaluation of Bagging, Boosting, and Random Forests for Land-Cover Classification in Cape Cod, Massachusetts, USA. GIScience Remote Sens. 2012, 49, 623–643. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest Classification of Mediterranean Land Cover Using Multi-Seasonal Imagery and Multi-Seasonal Texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Bauer, M.E.; Burk, T.E.; Ek, A.R.; Coppin, P.R.; Lime, S.D.; Walsh, T.A. Satellite inventory of Minnesota forest resources. Photogramm. Eng. Remote Sens. 1994, 60, 287–298. [Google Scholar]
- McIver, D.K.; Friedl, M.A. Estimating Pixel-Scale Land Cover Classification Confidence Using Nonparametric Machine Learning Methods. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1959–1968. [Google Scholar] [CrossRef]
- Rokach, L. Ensemble-Based Classifiers. Artif. Intell. Rev. 2010, 33, 1–39. [Google Scholar] [CrossRef]
- Liu, D.; Cai, S. A Spatial-Temporal Modeling Approach to Reconstructing Land-Cover Change Trajectories from Multi-Temporal Satellite Imagery. Ann. Assoc. Am. Geogr. 2012, 102, 1329–1347. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Wei, X.; Zhang, L.; Yao, Y.; Gao, S. Automatic Land-Cover Update Approach Integrating Iterative Training Sample Selection and a Markov Random Field Model. Remote. Sens. Lett. 2014, 5, 148–156. [Google Scholar] [CrossRef]
- Dahhani, S.; Raji, M.; Hakdaoui, M.; Lhissou, R. Land Cover Mapping Using Sentinel-1 Time-Series Data and Machine-Learning Classifiers in Agricultural Sub-Saharan Landscape. Remote Sens. 2022, 15, 65. [Google Scholar] [CrossRef]
- Burgueño, A.M.; Aldana-Martín, J.F.; Vázquez-Pendón, M.; Barba-González, C.; Jiménez Gómez, Y.; García Millán, V.; Navas-Delgado, I. Scalable Approach for High-Resolution Land Cover: A Case Study in the Mediterranean Basin. J. Big Data 2023, 10, 91. [Google Scholar] [CrossRef]
- Zhang, H.; He, J.; Chen, S.; Zhan, Y.; Bai, Y.; Qin, Y. Comparing Three Methods of Selecting Training Samples in Supervised Classification of Multispectral Remote Sensing Images. Sensors 2023, 23, 8530. [Google Scholar] [CrossRef] [PubMed]
- Oyekola, M.; Adewuyi, K. Unsupervised Classification in Land Cover Types Using Remote Sensing and GIS Techniques. Int. J. Sci. Eng. Investig. 2018, 7, 11–18. [Google Scholar]
- Knight, J.F.; Corcoran, J.M.; Rampi, L.P.; Pelletier, K.C. Theory and Applications of Object-Based Image Analysis and Emerging Methods in Wetland Mapping; Remote Sensing of Wetlands: Applications and Advances; CRC Press: Boca Raton, FL, USA, 2015; pp. 175–194. [Google Scholar]
- Jun, G.; Ghosh, J. Semisupervised Learning of Hyperspectral Data With Unknown Land-Cover Classes. IEEE Trans. Geosci. Remote Sens. 2013, 51, 273–282. [Google Scholar] [CrossRef]
- Tipping, M.E. Sparse Bayesian Learning and the Relevance Vector Machine. J. Mach. Learn. Res. 2001, 1, 211–244. [Google Scholar] [CrossRef]
- Fan, X.; Chen, L.; Xu, X.; Yan, C.; Fan, J.; Li, X. Land Cover Classification of Remote Sensing Images Based on Hierarchical Convolutional Recurrent Neural Network. Forests 2023, 14, 1881. [Google Scholar] [CrossRef]
- Robertson, L.D.; Davidson, A.; McNairn, H.; Hosseini, M.; Mitchell, S. Assessment of Multi-Frequency SAR for Crop Type Classification and Mapping. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 489–492. [Google Scholar]
- Blaes, X.; Vanhalle, L.; Defourny, P. Efficiency of Crop Identification Based on Optical and SAR Image Time Series. Remote Sens. Environ. 2005, 96, 352–365. [Google Scholar] [CrossRef]
- Feingersh, T.; Gorte, B.G.H.; Van Leeuwen, H.J.C. Fusion of SAR and SPOT image data for crop mapping. Int. Geosci. Remote Sens. Symp. 2001, 2, 873–875. [Google Scholar]
- Gibril, M.B.A.; Bakar, S.A.; Yao, K.; Idrees, M.O.; Pradhan, B. Fusion of RADARSAT-2 and Multispectral Optical Remote Sensing Data for LULC Extraction in a Tropical Agricultural Area. Geocarto Int. 2017, 32, 735–748. [Google Scholar] [CrossRef]
- Firouzabadi, P.Z.; Sadidy, J. Paddy Rice Mapping of the Caspian Sea Coast Using Microwave and Optical Remotely Sensed Data. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology VIII, Stockholm, Sweden, 17 October 2006; Volume 6359, pp. 287–296. [Google Scholar]
- Abdikan, S.; Bilgin, G.; Sanli, F.B.; Uslu, E.; Ustuner, M. Enhancing land use classification with fusing dual-polarized TerraSAR-X and multispectral RapidEye data. J. Appl. Remote Sens. 2015, 9, 096054. [Google Scholar] [CrossRef]
- Abdikan, S.; Sanli, F.B. Comparison of Different Fusion Algorithms in Urban and Agricultural Areas Using Sar (Palsar and Radarsat) and Optical (Spot) Images. Bol. Ciênc. Geod. 2012, 18, 509–531. [Google Scholar] [CrossRef]
- Dusseux, P.; Corpetti, T.; Hubert-Moy, L.; Corgne, S. Combined Use of Multi-Temporal Optical and Radar Satellite Images for Grassland Monitoring. Remote Sens. 2014, 6, 6163–6182. [Google Scholar] [CrossRef]
- McNairn, H.; Ellis, J.; Van Der Sanden, J.J.; Hirose, T.; Brown, R.J. Providing crop information using RADARSAT-1 and satellite optical imagery. ISPRS J. Photogramm. Remote Sens. 2002, 23, 851–870. [Google Scholar]
- Michelson, D.B.; Liljeberg, B.M.; Pilesjo, P. Comparison of algorithms for classifying Swedish landcover using LANDSAT TM and ERS-1 SAR data. Remote Sens. Environ. 2000, 71, 1–15. [Google Scholar] [CrossRef]
- Khosravi, I.; Safari, A.; Homayouni, S. MSMD: Maximum Separability and Minimum Dependency Feature Selection for Cropland Classification from Optical and Radar Data. Int. J. Remote Sens. 2018, 39, 2159–2176. [Google Scholar] [CrossRef]
- Waske, B.; van der Linden, S. Classifying Multilevel Imagery From SAR and Optical Sensors by Decision Fusion. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1457–1466. [Google Scholar] [CrossRef]
- Ban, Y.; Hu, H.; Rangel, I.M. Fusion of Quickbird MS and RADARSAT SAR Data for Urban Land-Cover Mapping: Object-Based and Knowledge-Based Approach. Int. J. Remote Sens. 2010, 31, 1391–1410. [Google Scholar] [CrossRef]
- Betbeder, J.; Laslier, M.; Corpetti, T.; Pottier, E.; Corgne, S.; Hubert-Moy, L. Multi-Temporal Optical and Radar Data Fusion for Crop Monitoring: Application to an Intensive Agricultural Area in BRITTANY(France). In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1493–1496. [Google Scholar]
- Imperatore, P.; Di Martino, G. SAR Radiometric Calibration Based on Differential Geometry: From Theory to Experimentation on SAOCOM Imagery. Remote Sens. 2023, 15, 1286. [Google Scholar] [CrossRef]
- Abdikan, S.; Balik Sanli, F.; Sunar, F.; Ehlers, M. A Comparative Data-Fusion Analysis of Multi-Sensor Satellite Images. Int. J. Digit. Earth 2014, 7, 671–687. [Google Scholar] [CrossRef]
- McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of Optical and Synthetic Aperture Radar (SAR) Imagery for Delivering Operational Annual Crop Inventories. ISPRS J. Photogramm. Remote Sens. 2009, 64, 434–449. [Google Scholar] [CrossRef]
- Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series. Remote Sens. 2016, 8, 362. [Google Scholar] [CrossRef]
- Shang, J.; McNairn, H.; Champagne, C.; Jiao, X. Contribution of Multi-Frequency, Multi-Sensor, and Multi-Temporal Radar Data to Operational Annual Crop Mapping. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 6–11 July 2008; Volume 3, pp. III-378–III-381. [Google Scholar]
- Zhou, T.; Pan, J.; Zhang, P.; Wei, S.; Han, T. Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region. Sensors 2017, 17, 1210. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Zhang, J.; Genderen, J.L.V. comparison and analysis of remote sensing data fusion techniques at feature and decision levels. In Proceedings of the ISPRS Mid-Term Symposium 2006 Remote Sensing: From Pixels to Processes, Enschede, The Netherlands, 8–11 May 2006. [Google Scholar]
- Ghamisi, P.; Höfle, B.; Zhu, X.X. Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network. IEEE J. Sel. Top. App. Earth Obs. Remote Sens. 2017, 10, 3011–3024. [Google Scholar] [CrossRef]
- Thenkabail, P.S. Land Resources Monitoring, Modeling, and Mapping with Remote Sensing; CRC Press: Boca Raton, FL, USA, 2015; ISBN 978-1-4822-1798-8. [Google Scholar]
- Misbah, K.; Laamrani, A.; Khechba, K.; Dhiba, D.; Chehbouni, A. Multi-Sensors Remote Sensing Applications for Assessing, Monitoring, and Mapping NPK Content in Soil and Crops in African Agricultural Land. Remote Sens. 2022, 14, 81. [Google Scholar] [CrossRef]
- Khechba, K.; Laamrani, A.; Dhiba, D.; Misbah, K.; Chehbouni, A. Monitoring and Analyzing Yield Gap in Africa through Soil Attribute Best Management Using Remote Sensing Approaches: A Review. Remote Sens. 2021, 13, 4602. [Google Scholar] [CrossRef]
Combination Level | Combination Methods | Publication Topic | Reference |
---|---|---|---|
Multi-frequency SAR data combination | Comparison of multi-frequency SAR data for crop classification and mapping of ALOS-2, TerraSAR-X, RADARSAT-2 | Assessment of multi-frequency SAR data for crop mapping | [84] |
Pixel-level combination | Simple band combinations, Principal component analysis (PCA), Intensity, Hue and Saturation (IHS), Discrete Wavelet Transform (DWT), Brovey Transform (BT), Ehlers combination (EF), High Pass Filter (HPF) | The efficient utilization of optical and SAR image time series for crop identification Combining SPOT and SAR image information for crop mapping Multispectral optical remote sensing and RADARSAT-2 data combination for LULC extraction in a tropical agricultural region The mapping of paddy rice along the littoral of the Caspian Sea by means of microwave and optical remotely sensed data The integration of multispectral RapidEye and dual-polarized TerraSAR-X data to improve land use classification An analysis of various combination algorithms implemented on optical (SPOT) and sar (palsar and radarsat) images in agricultural and urban regions Utilization of multi-temporal optical and radar satellite images in conjunction to monitor grasslands Crop information provision via satellite optical imagery and RADARSAT-1 Utilizing Landsat TM and ERS-1 SAR data to compare algorithms for classifying Swedish landcover | [85,86,87,88,89,90,91,92,93] |
Feature-level combination | Maximum separability and minimum dependency (MSMD) | MSMD: feature selection with maximal separability and minimum dependence for the classification of cropland using optical and radar data | [94] |
Decision-level combination | Voting strategy Contextual combination Dempster Shafer theory | Utilizing decision combination to classify multilevel images obtained from SAR and optical sensors Knowledge-based and objective combination of Quickbird MS and RADARSAT SAR data for urban land-cover mapping Application of multi-temporal optical and radar data integration to an intensive agricultural region in Britanny (France) for the purpose of crop monitoring. | [95,96,97] |
Radiometric calibration of SAR imagery | Radiometric calibration based on differential geometry | SAR radiometric calibration based on differential geometry: from theory to experimentation on SAOCOM imagery | [98] |
Mission | Live Time | Operator | Frequency (Band) | Centre Frequency (GHz) | Swath Width (km) | Image Resolution (m) | Polarization | Incidence Angle (°) | Repeat Rate (Days) |
---|---|---|---|---|---|---|---|---|---|
ENVISAT ASAR | 2002–2012 | European Space Agency | C | 5.331 | 56–40 | 30,000–1000 | Quad | 14 to 45 | 35 |
ERS-1 | 1991–2000 | European Space Agency | C | 5.3 | 5–500 | 10,000–50,000 | VV | 18 to 47 | 35 |
ERS-2 | 1995–2011 | ||||||||
RADARSAT-1 | 1995–2013 | Canadian Space Agency | C | 5.3 | 50–500 | 8–100 | HH | 10 to 59 | 24 |
RADARSAT-2 | 2007–act. | MDA | C | 5.405 | 18–500 | 3–100 | Quad | 10 to 60 | 24 |
Sentinel-1 | 2014–act. | European Space Agency | C | 5.405 | 20–400 | 5–40 | Dual | 18.3 to 47 | 12 |
SIR-C/X-SAR | 1994–1994 | NASA | L/C/X | 1.25/5.3/9.6 | 15–90 | 10–30 | L/C: Quad, X: W | 15 to 55 | – |
ALOS PALSAR | 2006–2011 | Japanese Space Exploration agency | L | 1.27 | 70–350 | 10–100 | Quad | 8 to 60 | 46 |
JERS-1 | 1992–1998 | Japan Aerospace Exploration agency | L | 1.275 | 75 | 18 | HH | 35.21 | 44 |
COSMO-SkyMed | 2007–act. | Italian Space Agency | X | 9.65 | 10–200 | 1–100 | Quad | 18 to 59.9 | 16 |
TerraSAR-X | 2007–act | German Aerospace Agency | X | 9.65 | 5–150 | 1–16 | Quad | 20 to 55 | 11 |
Mission | Live Time | Operator | Bands | Wavelength Range (µm) | Spatial Resolution (m) | Scene Size (km) | Altitude (km) | Repeat Rate (days) |
---|---|---|---|---|---|---|---|---|
Landsat * 7 | 1972–act. | USGS1 & NASA2 | 8MS3 + 1Pan.4 + 2Ter.5 | 0.43–12.51 | MS: 30 m Pan: 15 m Ter: 100 m | 170 × 185 | 705 | 16 |
SPOT * 5 | 1986–act. | Space Agency of France | 3MS3 + 1Pan4 + 1SWIR5 | 0.49–1.75 | MS: 10 m Pan: 5 m SWIR: 20 m. | 60 × 60 | 832 | 26 |
RapidEye | 2008–act. | BlackBridge AG | 5MS3 | 0.44–0.85 | MS: 5 m | 77 × 77 | 630 | 5.5 |
IRS * 1C | 1988–act. | Indian space research | 4MS3 + 1Pan4 + 2swir5 | 0.52–1.70 | MS: 23.5 m Pan: 5.8 m SWIR: 70 m | 141 × 141 | 817 | 24 |
Terra MODIS | 1999–act. | NASA2 | 4MS3 + 3SWIR5 | Band 1–7: 0.45–2.15 | Band 1–2: 250 m Band 3–7: 500 m | 10 × 10 | 705 | 16 |
QuickBird | 2001–2015 | DigitalGlobe | 4MS3 + 1Pan4 | 0.45–0.9 | MS: 2.90 m Pan: 0.65. | 16.8 × 16.8 | 450 | 3.5 |
Thaichote | 2007–act. | Thai Ministry of science and technology’s space agency | 4MS3 + 1Pan4 | 0.45–0.9 | MS: 15 Pan: 2 m | 22 × 22 | 822 | over Thailand—3 |
Kompsat * 2 | 1999–act. | Korea Aerospace Research Institute | 4MS3 + 1Pan4 | 0.45–0.9 * 2 | MS: 1; Pan: 4 m. | 15 × 15 | 685 | 3 |
Sentienl-2 | 2015–act. | European Space Agency | 10MS3 + 3SWIR5 | 0.443–2.19 | 4 bands—10 m; 6 m bands—20 m; 3 bands—60 m. | Tile: 100 × 100 | 786 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choukri, M.; Laamrani, A.; Chehbouni, A. Use of Optical and Radar Imagery for Crop Type Classification in Africa: A Review. Sensors 2024, 24, 3618. https://doi.org/10.3390/s24113618
Choukri M, Laamrani A, Chehbouni A. Use of Optical and Radar Imagery for Crop Type Classification in Africa: A Review. Sensors. 2024; 24(11):3618. https://doi.org/10.3390/s24113618
Chicago/Turabian StyleChoukri, Maryam, Ahmed Laamrani, and Abdelghani Chehbouni. 2024. "Use of Optical and Radar Imagery for Crop Type Classification in Africa: A Review" Sensors 24, no. 11: 3618. https://doi.org/10.3390/s24113618
APA StyleChoukri, M., Laamrani, A., & Chehbouni, A. (2024). Use of Optical and Radar Imagery for Crop Type Classification in Africa: A Review. Sensors, 24(11), 3618. https://doi.org/10.3390/s24113618