Assessment of Measurement Uncertainty for S-Parameter Measurement Based on Covariance Matrix
Abstract
:1. Introduction
2. Covariance Matrix Uncertainty Assessment
3. VNA Measurement Uncertainty Analysis
4. VNA Measurement Type B Uncertainty Assessment Process
4.1. Uncertainty Analysis of Calibration Standards
4.2. Uncertainty Analysis of Error Models
4.2.1. Single-Port Measurement
4.2.2. Two-Port Measurement
5. Assessment of Uncertainty of S-Parameters of Grounded Coplanar Waveguide
5.1. Construction of the Measurement System
5.2. Uncertainty Assessment Results Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramnath, V. Determining the covariance matrix for a nonlinear implicit multivariate measurement equation uncertainty analysis. Int. J. Metrol. Qual. Eng. 2022, 13, 9. [Google Scholar] [CrossRef]
- BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of measurement data—Supplement 1 to the Guide to the expression of uncertainty in measurement—Propagation of distributions using a Monte Carlo method. JCGM 2011, 101, 2008. [Google Scholar]
- Hall, B.D. Expanded uncertainty regions for complex quantities in polar coordinates. Metrologia 2015, 52, 486. [Google Scholar] [CrossRef]
- Hall, B.D. Evaluating the measurement uncertainty of complex quantities: A selective review. Metrologia 2016, 53, S25. [Google Scholar] [CrossRef]
- Hall, B.D. Calculations of measurement uncertainty in complex-valued quantities involving ‘uncertainty in the uncertainty’. In Proceedings of the 64th ARFTG Microwave Measurements Conference, Fall 2004, Orlando, FL, USA, 2–3 December 2004. [Google Scholar] [CrossRef]
- Hall, B.D. On the propagation of uncertainty in complex-valued quantities. Metrologia 2004, 41, 173–177. [Google Scholar] [CrossRef]
- Hou, Z.; Huang, D.; Tong, L. 8 Error Module of Vector Network Analyzer and Calibrating Theory. Chin. J. Sci. Instrum. 2004, 25, 764–766. [Google Scholar]
- Mubarak, F.A.; Mascolo, V.; Hussain, F.; Rietveld, G. Calculating-Parameters and Uncertainties of Coaxial Air-Dielectric Transmission Lines. IEEE Trans. Instrum. Meas. 2024, 73, 8000511. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, X.; Lin, M. Research on the propagation law and analysis method of uncertainty in VNA/NVNA/LSNA measurement based on covariance matrix. J. Instrum. 2012, 33, 8. [Google Scholar] [CrossRef]
- Ridler, N.M.; Salter, M.J. Propagating S-parameter uncertainties to other measurement quantities. In Proceedings of the 58th ARFTG Conference Digest, San Diego, CA, USA, 29–30 November 2001. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, Y.J.; Jin, Y.M.; Zhou, Y.G. Sensitivity analysis of multiport S-parameter measurements due to nonideal TRL calibration standards. Radio Sci. 2017, 52, 1096–1105. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, M.; Zhao, Y.; Zhou, Y. The influence of non ideal calibration components on the measurement results of S-parameters. J. Microw. Sci. 2017, 33, 4. [Google Scholar] [CrossRef]
- Williams, D.; Lewandowski, A.; Clement, T.; Wang, J.; Hale, P.; Morgan, J.; Keenan, D.; Dienstfrey, A. Covariance-based uncertainty analysis of the NIST electrooptic sampling system. IEEE Trans. Microw. Theory Tech. 2006, 54, 481–491. [Google Scholar] [CrossRef]
- Williams, D.F.; Hale, P.D.; Clement, T.S.; Morgan, J.M. Mismatch Corrections for Electro-Optic Sampling Systems. In Proceedings of the 56th ARFTG Conference Digest, Boulder, AZ, USA, 30 November–1 December 2000. [Google Scholar] [CrossRef]
- Hale, P.D.; Dienstfrey, A.; Wang, J.C.M.; Williams, D.F.; Lewandowski, A.; Keenan, D.A.; Clement, T.S. Traceable Waveform Calibration With a Covariance-Based Uncertainty Analysis. IEEE Trans. Instrum. Meas. 2009, 58, 3554–3568. [Google Scholar] [CrossRef]
- Hale, P.D.; Wang, C.M.J. Calculation of Pulse Parameters and Propagation of Uncertainty. IEEE Trans. Instrum. Meas. 2009, 58, 639–648. [Google Scholar] [CrossRef]
- Dubois, C.; Leblond, L.; Pou, J.-M.; Ferrero, A. Covariance Evaluation by Means of Uncertainty Assessment. IEEE Instrum. Meas. Mag. 2018, 21, 13. [Google Scholar] [CrossRef]
- Huang, H.; Liu, X.; Lv, X. Monte-Carlo analysis of measurement uncertainties for on-wafer Short-Open-Load-Reciprocal calibrations. In Proceedings of the Asia-Pacific Microwave Conference 2011, Melbourne, VIC, Australia, 5–8 December 2011. [Google Scholar]
- Keysight Technologies 85058B/E 1.85 mm Calibration Kits. Available online: https://www.keysight.com.cn/cn/zh/support/85058B/standard-mechanical-calibration-kit-dc-67-ghz-1-85-mm.html (accessed on 6 March 2024).
- Keysight Vector Network Analyzer Calibration Kit Standards Definitions. Available online: https://www.keysight.com.cn/cn/zh/support/85058B/standard-mechanical-calibration-kit-dc-67-ghz-1-85-mm.html (accessed on 6 March 2024).
- Zhu, J.; Wan, Z.; Zhao, K. Method to Change the Through-Hole Structure to Broaden Grounded Coplanar Waveguide Bandwidth. Sensors 2023, 23, 4342. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Zhang, Y.; Wu, Z.; Gou, Y.; Lin, M. Covariance matrix analysis of VNA uncertainty propagation and its application in power meter calibration. New Ind. 2012, 12, 1–11. [Google Scholar] [CrossRef]
Bandwidth | Short-Uncertainty | Open-Uncertainty | Load-Return Loss |
---|---|---|---|
DC~10 GHz | 1.5° | 2.5° | 35 dB |
10 GHz~20 GHz | 1.5° | 3.5° | 34 dB |
20 GHz~30 GHz | 2.0° | 3.5° | 29 dB |
30 GHz~35 GHz | 2.5° | 3.5° | 29 dB |
35 GHz~40 GHz | 2.5° | 3.5° | 12 dB |
40 GHz~50 GHz | 3.5° | 3.5° | 12 dB |
50 GHz~60 GHz | 4.0° | 5.0° | 12 dB |
60 GHz~67 GHz | 4.0° | 5.0° | 10 dB |
Parameters | Short-Parameters | Open-Parameters |
---|---|---|
L0/C0 | 1.4957 () | −3.5342 () |
L1/C1 | −323.18 () | 425.24 () |
L2/C2 | 11.624 () | −13.946 () |
L3/C3 | −0.10939 () | 0.12741 () |
Z0 | 50 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Wang, Y.; Zhao, K.; Wang, Y.; Fu, C.; Man, K. Assessment of Measurement Uncertainty for S-Parameter Measurement Based on Covariance Matrix. Sensors 2024, 24, 3668. https://doi.org/10.3390/s24113668
Zhu J, Wang Y, Zhao K, Wang Y, Fu C, Man K. Assessment of Measurement Uncertainty for S-Parameter Measurement Based on Covariance Matrix. Sensors. 2024; 24(11):3668. https://doi.org/10.3390/s24113668
Chicago/Turabian StyleZhu, Jiangmiao, Yifan Wang, Kejia Zhao, Yidi Wang, Chaoxian Fu, and Kaige Man. 2024. "Assessment of Measurement Uncertainty for S-Parameter Measurement Based on Covariance Matrix" Sensors 24, no. 11: 3668. https://doi.org/10.3390/s24113668
APA StyleZhu, J., Wang, Y., Zhao, K., Wang, Y., Fu, C., & Man, K. (2024). Assessment of Measurement Uncertainty for S-Parameter Measurement Based on Covariance Matrix. Sensors, 24(11), 3668. https://doi.org/10.3390/s24113668