Experimental Demonstration of a Tunable Energy-Selective Gamma-Ray Imaging System Based on Recoil Electrons
Abstract
:1. Introduction
2. Conceptual Design
- Radiation Conversion Target, which utilizes a Beryllium foil to facilitate the interaction between gamma rays and electrons, thereby generating recoil electrons;
- Achromatic Point-to-Point Imaging Structure, featuring an odd-symmetric configuration of two dipole electromagnetic coils designed to accurately image recoil electrons across a spectrum of divergence angles and energy distributions, while also correcting for chromatic aberrations to maintain imaging clarity and precision;
- Image Plate, which is responsible for capturing and recording the spatial distribution of electron positions, subsequently transforming this information into image data for further analysis and processing.
3. Experimental Setup
4. Results and Discussion
4.1. Demonstration of Imaging Performance and Assessment of Spatial Resolution
- Inaccuracies in the experimental setup, particularly the alignment of the two large and heavy magnets (each weighing over 300 kg), which can lead to misalignment and disrupt the imaging conditions, resulting in aberrations as shown in Figure 6.
- Imprecise placement of the tungsten block used for imaging; for instance, if the block is tilted, it can cause inconsistent attenuation of gamma rays along its edges, leading to the observed results in Figure 6.
4.2. Evaluation of Energy Resolution and Detection Efficiency
- Our system achieves gamma-ray energy-selective imaging by recovering images from Compton electrons, employing a collimator to improve spatial resolution at the expense of some detection efficiency because of electron divergence and energy spread.
- The Compton spectrometer, designed for gamma-ray spectral analysis, forgoes collimators for higher detection efficiency, accepting some image blurring from electron dispersion.
- Optimizing beam optics. Experiments have confirmed that the structure, composed of two dipole magnets, can recover gamma-ray image information. Fine-tuning the parameters of the magnets and collimators can enhance the system’s imaging capabilities, allowing gamma rays with larger divergence angles and energy dispersion to reach the image plane without compromising spatial resolution, thereby reducing beam loss and enhancing detection efficiency.
- Improving hardware design. The current prototype’s hardware components have not been fully optimized. For example, the vacuum channel system, which provides a vacuum environment for electron transport, may not offer sufficient space for electron movement, leading to unnecessary collisions and beam loss.
- Incorporating image reconstruction algorithms. Since the imaging process of our system can be accurately modeled using Monte Carlo simulations, the theoretical point spread function can be simulated. This provides a basis for introducing image reconstruction algorithms, which can reduce the system’s reliance on beam optical design, enabling a trade-off between spatial resolution and higher detection efficiency.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mosayebnia, M.; Ahmadi, M.; Emzhik, M.; Hajiramezanali, M. Chapter 6—Gamma-ray involved in cancer therapy and imaging. In Electromagnetic Waves-Based Cancer Diagnosis and Therapy; Khafaji, M., Bavi, O., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 295–345. [Google Scholar] [CrossRef]
- Tashima, H.; Yamaya, T. Compton imaging for medical applications. Radiol. Phys. Technol. 2022, 15, 187–205. [Google Scholar] [CrossRef]
- Alyassin, A.M.; Maqsoud, H.A.; Mashat, A.M.; Al-Mohr, A.S.; Abdulwajid, S. Feasibility study of gamma-ray medical radiography. Appl. Radiat. Isot. 2013, 72, 16–29. [Google Scholar] [CrossRef]
- Vetter, K.; Barnowksi, R.; Haefner, A.; Joshi, T.H.; Pavlovsky, R.; Quiter, B.J. Gamma-Ray imaging for nuclear security and safety: Towards 3-D gamma-ray vision. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 878, 159–168. [Google Scholar] [CrossRef]
- Al Hamrashdi, H.; Monk, S.D.; Cheneler, D. Passive Gamma-Ray and Neutron Imaging Systems for National Security and Nuclear Non-Proliferation in Controlled and Uncontrolled Detection Areas: Review of Past and Current Status. Sensors 2019, 19, 2638. [Google Scholar] [CrossRef]
- Madden, A.C.; Bloser, P.F.; Fourgette, D.; Larocque, L.; Legere, J.S.; Lewis, M.; McConnell, M.L.; Rousseau, M.; Ryan, J.M. An imaging neutron/gamma-ray spectrometer. In Proceedings of the Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV, Baltimore, MD, USA, 30 April–3 May 2013; Fountain, A., Ed.; SPIE: Baltimore, MD, USA, 2013; Volume 8710. [Google Scholar] [CrossRef]
- Ziock, K.P. Principles and applications of gamma-ray imaging for arms control. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrometers Detect. Assoc. Equip. 2018, 878, 191–199. [Google Scholar] [CrossRef]
- Geppert-Kleinrath, V.; Hoffman, N.; Birge, N.; DeYoung, A.; Fittinghoff, D.; Freeman, M.; Geppert-Kleinrath, H.; Kim, Y.; Meaney, K.; Morgan, G.; et al. Gamma-ray imaging of inertial confinement fusion implosions reveals remaining ablator carbon distribution. Phys. Plasmas 2023, 30, 022703. [Google Scholar] [CrossRef]
- Rubery, M.; Fittinghoff, D.N.; Cherepy, N.J.; Danly, C.; Geppert-Kleinrath, V.; Fatherley, V.; Jorgenson, H.; Freeman, M.; Wilde, C.H.; Volegov, P.L.; et al. Improved gamma imaging at NIF using the ceramic scintillator GYGAG. In Proceedings of the Optical Engineering + Applications, San Diego, CA, USA, 20–25 August 2023. [Google Scholar]
- Kim, Y.; Herrmann, H.W. Gamma-ray measurements for inertial confinement fusion applications. Rev. Sci. Instrum. 2023, 94, 041101. [Google Scholar] [CrossRef]
- Horsfield, C.J.; Rubery, M.S.; Mack, J.M.; Herrmann, H.W.; Kim, Y.; Young, C.S.; Caldwell, S.E.; Evans, S.C.; Sedillo, T.S.; McEvoy, A.M.; et al. First spectral measurement of deuterium-tritium fusion γ rays in inertial fusion experiments. Phys. Rev. C 2021, 104, 024610. [Google Scholar] [CrossRef]
- Frenje, J.A. Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas. Plasma Phys. Control. Fusion 2020, 62, 023001. [Google Scholar] [CrossRef]
- Meaney, K.D.; Kim, Y.H.; Geppert-Kleinrath, H.; Herrmann, H.W.; Hopkins, L.B.; Hoffman, N.M.; Cerjan, C.J.; Landen, O.L.; Baker, K.; Carrera, J.A.; et al. Carbon ablator areal density at fusion burn: Observations and trends at the National Ignition Facility. Phys. Plasmas 2020, 27, 052702. [Google Scholar] [CrossRef]
- Tan, X.; Weng, X.; Song, Z.; Hei, D.; Li, B.; Zhang, X.; Liu, J.; Han, H.; Zhang, K. Conceptual design of magnetic spectrometer for inverse-Compton X-ray source in MeV region. AIP Adv. 2017, 7, 105012. [Google Scholar] [CrossRef]
- Yang, T.; Hu, G.Y.; Li, M.T.; Lian, C.W.; Zhang, Z.C.; Luo, W.; Ma, Y.; Zheng, J. Compact broadband Compton spectroscopy used for intense laser-driven gamma rays. Rev. Sci. Instrum. 2021, 92, 053546. [Google Scholar] [CrossRef]
- Corvan, D.J.; Sarri, G.; Zepf, M. Design of a compact spectrometer for high-flux MeV gamma-ray beams. Rev. Sci. Instrum. 2014, 85, 065119. [Google Scholar] [CrossRef]
- Compton, A. A quantum theory of the scattering of X-rays by light elements. Phys. Rev. 1923, 21, 0483–0502. [Google Scholar] [CrossRef]
- Zhang, C.; Sheng, L.; Song, Z.; Da, T.; Li, H.; Duan, B.; Li, Y.; Hei, D.; Wang, Q. Conceptual design of a gamma-to-electron energy-selective imaging system for high-flux MeV gamma rays. 2024; submitted. [Google Scholar]
- Amsler, C.; Doser, M.; Antonelli, M.; Asner, D.; Babu, K.; Baer, H.; Band, H.; Barnett, R.; Bergren, E.; Beringer, J.; et al. Review of Particle Physics. Phys. Lett. B 2008, 667, 1–6. [Google Scholar] [CrossRef]
- Arshed, W.; Mahmood, K.; Qazi, I.; Ullah, A.; Akhter, P.; Ahmad, S.; Jamil, Z. A comparison of in-air and in-water calibration of a dosimetry system used for radiation dose assessment in cancer therapy. Nucl. Technol. Radiat. Prot. 2010, 25, 51–54. [Google Scholar] [CrossRef]
- Williams, G.J.; Maddox, B.; Chen, H.H.; Kojima, S.; Millecchia, M.R. Calibration and equivalency analysis of image plate scanners. Rev. Sci. Instrum. 2014, 85 11, 11E604. [Google Scholar] [CrossRef]
- Ding, S. The calculation and analysis of knife-edge and slit scanning in OTF measuring equipment. Opt. Tech. 2001, 27, 41–43. [Google Scholar]
- Kim, Y.; Herrmann, H.W.; Jorgenson, H.J.; Barlow, D.B.; Young, C.S.; Stoeffl, W.; Casey, D.; Clancy, T.; Lopez, F.E.; Oertel, J.A.; et al. Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facilitya). Rev. Sci. Instrum. 2014, 85, 11E122. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Energy of the photons | 1.173 MeV, 1.332 MeV |
Distance from source to convertor | 1.5 m |
Diameter of the beam after collimation | 40 mm |
Dose rate at the convertor | 49.84 R/min |
Flux at the convertor | 1.36 × /(cm2 · s) |
Exposure time | 30 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Sheng, L.; Song, Z.; Da, T.; Li, H.; Duan, B.; Li, Y.; Hei, D.; Wang, Q. Experimental Demonstration of a Tunable Energy-Selective Gamma-Ray Imaging System Based on Recoil Electrons. Sensors 2024, 24, 3736. https://doi.org/10.3390/s24123736
Zhang C, Sheng L, Song Z, Da T, Li H, Duan B, Li Y, Hei D, Wang Q. Experimental Demonstration of a Tunable Energy-Selective Gamma-Ray Imaging System Based on Recoil Electrons. Sensors. 2024; 24(12):3736. https://doi.org/10.3390/s24123736
Chicago/Turabian StyleZhang, Changqing, Liang Sheng, Zhaohui Song, Tianxing Da, Haoqing Li, Baojun Duan, Yang Li, Dongwei Hei, and Qunshu Wang. 2024. "Experimental Demonstration of a Tunable Energy-Selective Gamma-Ray Imaging System Based on Recoil Electrons" Sensors 24, no. 12: 3736. https://doi.org/10.3390/s24123736
APA StyleZhang, C., Sheng, L., Song, Z., Da, T., Li, H., Duan, B., Li, Y., Hei, D., & Wang, Q. (2024). Experimental Demonstration of a Tunable Energy-Selective Gamma-Ray Imaging System Based on Recoil Electrons. Sensors, 24(12), 3736. https://doi.org/10.3390/s24123736