The Improved Biometric Identification of Keystroke Dynamics Based on Deep Learning Approaches
Abstract
:1. Introduction
2. Related Work
2.1. Background
2.2. Deep Learning Approaches
- KDE;
- Manhattan Distance;
- Scaled Manhattan Distance;
- Mahalanobis Distance;
- Transformed Mahalanobis Distance.
- Sequence length;
- Feature vector size;
- Neural network architecture (RNN architecture and CNN + RNN architecture, where the convolutional network precedes the recurrent neural network).
3. Materials and Methods
3.1. Materials
- K1;
- K2;
- H1time;
- H2time;
- UDtime.
- Keys corresponding to the letters of the English alphabet;
- Keys corresponding to the digits in the range of 0 and 9;
- Space key.
3.2. Methods
- The number of filters;
- The kernel size;
- The stride value;
- The activation function.
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | Anomaly correlation coefficient |
CNN | Convolutional neural network |
EER | Equal error rate |
FAR | False acceptance rate |
FPR | False positive rate |
FRR | False rejection rate |
GRU | Gated Recurrent Unit |
LSTM | Long Short-Term Memory |
MLP | Multilayer perceptron |
ReLU | Rectified Linear Unit |
RNN | Recurrent neural network |
References
- Yampolskiy, R.; Govindaraju, V. Behavioural biometrics: A survey and classification. Int. J. Biom. 2008, 1, 81–113. [Google Scholar] [CrossRef]
- Ahmed, A.A.E.; Traore, I. A New Biometric Technology Based on Mouse Dynamics. IEEE Trans. Dependable Secur. Comput. 2007, 4, 165–179. [Google Scholar] [CrossRef]
- Monrose, F.; Rubin, A. Keystroke dynamics as a biometric for authentication. Future Gener. Comput. Syst. 2000, 16, 351–359. [Google Scholar] [CrossRef]
- Banerjee, S.; Woodard, D. Biometric Authentication and Identification Using Keystroke Dynamics: A Survey. J. Pattern Recognit. Res. 2012, 7, 116–139. [Google Scholar] [CrossRef]
- Messerman, A.; Mustafi, T.; Camtepe, S.; Albayrak, S. Continuous and non-intrusive identity verification in real-time environments based on free-text keystroke dynamics. In Proceedings of the 2011 International Joint Conference on Biometrics, IJCB 2011, Washington, DC, USA, 11–13 October 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Monaco, V.; Bakelman, N.; Cha, S.H.; Tappert, C. Developing a Keystroke Biometric System for Continual Authentication of Computer Users. In Proceedings of the 2012 European Intelligence and Security Informatics Conference, EISIC 2012, Odense, Denmark, 22–24 August 2012; pp. 210–216. [Google Scholar] [CrossRef]
- Gaines, R.S.; Lisowski, W.; Press, S.J.; Shapiro, N. Authentication by Keystroke Timing: Some Preliminary Results; RAND Corporation: Santa Monica, CA, USA, 1980. [Google Scholar]
- Zaharia, S. Authentication System Based on Keystroke Dynamics. Master’s Thesis, Aalborg University Copenhagen, Copenhagen, Denmark, 2018. [Google Scholar]
- Kumar, R. Machine Learning and Cognition in Enterprises: Business Intelligence Transformed; Apress: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Traore, I. Biometric Recognition Based on Free-Text Keystroke Dynamics. IEEE Trans. Cybern. 2014, 44, 458–472. [Google Scholar] [CrossRef]
- Araujo, L.; Sucupira, L.; Lizarraga, M.; Ling, L.; Yabu-Uti, J. User authentication through typing biometrics features. IEEE Trans. Signal Process. 2005, 53, 851–855. [Google Scholar] [CrossRef]
- Clarke, N.; Furnell, S. Authenticating mobile phone users using keystroke analysis. Int. J. Inf. Sec. 2007, 6, 1–14. [Google Scholar] [CrossRef]
- Ayotte, B.; Huang, J.; Banavar, M.; Hou, D.; Schuckers, S. Fast Continuous User Authentication Using Distance Metric Fusion of Free-Text Keystroke Data. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 2380–2388. [Google Scholar]
- Gramacki, A. Nonparametric Kernel Density Estimation and Its Computational Aspects; Springer: Berlin/Heidelberg, Germany, 2018; Volume 37. [Google Scholar]
- Indulal, G.; Gutmanb, I.; Vijayakumar, A. On distance energy of graphs. MATCH Commun. Math. Comput. Chem. 2008, 60, 461–472. [Google Scholar]
- Berger, V.W.; Zhou, Y. Kolmogorov–smirnov test: Overview. In Wiley Statsref: Statistics Reference Online; John Wiley & Sons Ltd.: Chichester, UK, 2014. [Google Scholar]
- Ayotte, B.; Banavar, M.; Hou, D.; Schuckers, S. Fast Free-Text Authentication via Instance-Based Keystroke Dynamics. IEEE Trans. Biom. Behav. Identity Sci. 2020, 2, 377–387. [Google Scholar] [CrossRef]
- Sun, Y.; Ceker, H.; Upadhyaya, S. Shared keystroke dataset for continuous authentication. In Proceedings of the 2016 IEEE International Workshop on Information Forensics and Security (WIFS), Abu Dhabi, United Arab Emirates, 4–7 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Lu, X.; Shengfei, Z.; Shengwei, Y. Continuous authentication by free-text keystroke based on CNN plus RNN. Procedia Comput. Sci. 2019, 147, 314–318. [Google Scholar]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Lu, X.; Shengfei, Z.; Hui, P.; Lio, P. Continuous Authentication by Free-text Keystroke based on CNN and RNN. Comput. Secur. 2020, 96, 101861. [Google Scholar] [CrossRef]
- Kasprowski, P.; Borowska, Ż.; Harężlak, K. Biometric Identification Based on Keystroke Dynamics. Sensors 2022, 22, 3158. [Google Scholar] [CrossRef]
- Tsimperidis, I.; Yucel, C.; Katos, V. Age and Gender as Cyber Attribution Features in Keystroke Dynamic-Based User Classification Processes. Electronics 2021, 10, 835. [Google Scholar] [CrossRef]
- Furnell, S.; Haskell-Dowland, P. A Long-Term Trial of Keystroke Profiling Using Digraph, Trigraph and Keyword Latencies. Secur. Prot. Inf. Process. Syst. 2004, 147, 275–289. [Google Scholar]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef]
- Lu, L.; Shin, Y.; Su, Y.; Karniadakis, G. Dying ReLU and Initialization: Theory and Numerical Examples. Commun. Comput. Phys. 2020, 28, 1671–1706. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, S.; Athaiya, A. Activation functions in neural networks. Int. J. Eng. Appl. Sci. Technol. 2020, 4, 310–316. [Google Scholar] [CrossRef]
Key Code | Event Type | Timestamp [ms] |
---|---|---|
A | KeyDown | 63578429792961 |
A | KeyUp | 63578429793054 |
M | KeyDown | 63578429793257 |
M | KeyUp | 63578429793382 |
Space | KeyDown | 63578429793429 |
Space | KeyUp | 63578429793554 |
H | KeyDown | 63578429793616 |
… | … | … |
… | … | … |
K1 | K2 | H1time [ms] | H2time [ms] | UDtime [ms] |
---|---|---|---|---|
12 | 15 | 257 | 327 | 118 |
Sequence Length | K1 | K2 | H1time [ms] | H2time [ms] | UDtime [ms] |
---|---|---|---|---|---|
12 | 37 | 210 | 181 | 120 | |
37 | 23 | 181 | 197 | 168 | |
… | … | … | … | … | |
N = 64 | … | … | … | … | … |
… | … | … | … | … | |
23 | 15 | 199 | 211 | 155 | |
15 | 9 | 211 | 176 | 147 |
Value | FPR | FNR | EER |
---|---|---|---|
average | 1.91% | 5.66% | 2.65% |
min | 0.13% | 1.91% | 0.45% |
max | 6.12% | 12.28% | 6.86% |
FPR | FNR | EER | |
---|---|---|---|
Authors’ results | 1.91% | 5.66% | 2.65% |
Former results [22] | 2.83% | 1.89% | 2.36% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyciślik, Ł.; Wylężek, P.; Momot, A. The Improved Biometric Identification of Keystroke Dynamics Based on Deep Learning Approaches. Sensors 2024, 24, 3763. https://doi.org/10.3390/s24123763
Wyciślik Ł, Wylężek P, Momot A. The Improved Biometric Identification of Keystroke Dynamics Based on Deep Learning Approaches. Sensors. 2024; 24(12):3763. https://doi.org/10.3390/s24123763
Chicago/Turabian StyleWyciślik, Łukasz, Przemysław Wylężek, and Alina Momot. 2024. "The Improved Biometric Identification of Keystroke Dynamics Based on Deep Learning Approaches" Sensors 24, no. 12: 3763. https://doi.org/10.3390/s24123763
APA StyleWyciślik, Ł., Wylężek, P., & Momot, A. (2024). The Improved Biometric Identification of Keystroke Dynamics Based on Deep Learning Approaches. Sensors, 24(12), 3763. https://doi.org/10.3390/s24123763