A Guide to Measuring Heart and Respiratory Rates Based on Off-the-Shelf Photoplethysmographic Hardware and Open-Source Software †
Abstract
:1. Introduction
2. Methodology
2.1. Study Goal and Design Criteria
2.2. Hardware Components
2.3. Software Components
2.4. Off-the-Shelf Prototype
2.5. Experimental Setup
2.6. Post-Processing of the Raw Signals
2.7. Statistical Analysis
3. Results
3.1. Supine Position
3.2. Seated Position
3.3. Standing Position
3.4. Walking Position
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Ageing and Health; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Ansah, J.P.; Chiu, C.T. Projecting the chronic disease burden among the adult population in the United States using a multi-state population model. Front. Public Health 2022, 10, 1082183. [Google Scholar] [CrossRef] [PubMed]
- Sulik, G.A.; Eich-Krohm, A. No longer a patient: The social construction of the medical consumer. In Advances in Medical Sociology; Chambré, S.M., Goldner, M., Eds.; Patients, Consumers and Civil Society; Emerald Group Publishing Limited: Bingley, UK, 2008; Volume 10, pp. 3–28. [Google Scholar] [CrossRef]
- Saltman, R.B.; Busse, R.; Figueras, J. Social Health Insurance Systems in Western Europe; Open University Press: New York, NY, USA, 2004. [Google Scholar]
- Indrakumari, R.; Poongodi, T.; Suresh, P.; Balamurugan, B. Chapter 6—The growing role of internet of things in healthcare wearables. In Emergence of Pharmaceutical Industry Growth with Industrial IoT Approach; Balas, V.E., Solanki, V.K., Kumar, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 163–194. [Google Scholar] [CrossRef]
- Hickey, A. The rise of wearables: From innovation to implementation. In Digital Health; Elsevier: Amsterdam, The Netherlands, 2021; pp. 357–365. [Google Scholar]
- Smuck, M.; Odonkor, C.A.; Wilt, J.K.; Schmidt, N.; Swiernik, M.A. The emerging clinical role of wearables: Factors for successful implementation in healthcare. NPJ Digit. Med. 2021, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- Beg, S.; Handa, M.; Shukla, R.; Rahman, M.; Almalki, W.H.; Afzal, O.; Altamimi, A.S.A. Wearable smart devices in cancer diagnosis and remote clinical trial monitoring: Transforming the healthcare applications. Drug Discov. Today 2022, 27, 103314. [Google Scholar] [CrossRef] [PubMed]
- Almotiri, S.H.; Khan, M.A.; Alghamdi, M.A. Mobile health (m-health) system in the context of IoT. In Proceedings of the 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Vienna, Austria, 22–24 August 2016; pp. 39–42. [Google Scholar]
- Grossman, P. The LifeShirt: A multi-function ambulatory system monitoring health, disease, and medical intervention in the real world. Stud. Health Technol. Inf. 2004, 108, 133–141. [Google Scholar]
- Haghi, M.; Thurow, K.; Stoll, R. Wearable devices in medical internet of things: Scientific research and commercially available devices. Healthc. Inform. Res. 2017, 23, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Lima, F.V.; Kadiyala, V.; Huang, A.; Agusala, K.; Cho, D.; Freeman, A.M.; Druz, R. At the Crossroads! Time to Start Taking Smartwatches Seriously. Am. J. Cardiol. 2022, 179, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Sinhal, R.; Singh, K.; Raghuwanshi, M. An overview of remote photoplethysmography methods for vital sign monitoring. In Proceedings of the Computer Vision and Machine Intelligence in Medical Image Analysis: International Symposium, ISCMM 2019, Online, 26–27 February 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 21–31. [Google Scholar]
- Allen, J.; Zheng, D.; Kyriacou, P.A.; Elgendi, M. Photoplethysmography (PPG): State-of-the-art methods and applications. Physiol. Meas. 2021, 42, 100301. [Google Scholar] [CrossRef] [PubMed]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1–R39. [Google Scholar] [CrossRef]
- Jhuma, F.; Hattori, R. Application of Organic Photodetectors (OPD) in Photoplethysmography (PPG) Sensors: A small review. Proc. Int. Exch. Innov. Conf. Eng. Sci. 2022, 8, 246–252. [Google Scholar] [CrossRef]
- Galli, A.; Frigo, G.; Narduzzi, C.; Giorgi, G. Robust estimation and tracking of heart rate by PPG signal analysis. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Torino, Italy, 22–25 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Charlton, P.H.; Bonnici, T.; Tarassenko, L.; Clifton, D.A.; Beale, R.; Watkinson, P.J. An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram. Physiol. Meas. 2016, 37, 610–626. [Google Scholar] [CrossRef]
- van Gent, P.; Farah, H.; van Nes, N.; van Arem, B. HeartPy: A novel heart rate algorithm for the analysis of noisy signals. Transp. Res. Part F Traffic Psychol. Behav. 2019, 66, 368–378. [Google Scholar] [CrossRef]
- Soni, R.; Muniyandi, M. Breath Rate Variability: A Novel Measure to Study the Meditation Effects. Int. J. Yoga 2019, 12, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Bhattacherjee, S.; Pal, S. Extraction of Respiration Signal from ECG for Respiratory Rate Estimation; IET: London, UK, 2015; p. 58. [Google Scholar] [CrossRef]
- Mohan, P.M.; Nisha, A.A.; Nagarajan, V.; Jothi, E.S.J. Measurement of arterial oxygen saturation (SpO2) using PPG optical sensor. In Proceedings of the 2016 International Conference on Communication and Signal Processing (ICCSP), Tamilnadu, India, 6–8 April 2016; pp. 1136–1140. [Google Scholar]
- Haque, C.A.; Hossain, S.; Kwon, T.H.; Kim, K.D. Comparison of different methods to estimate blood oxygen saturation using PPG. In Proceedings of the 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 20–22 October 2021; pp. 792–794. [Google Scholar]
- Ma, G.; Zhu, W.; Zhong, J.; Tong, T.; Zhang, J.; Wang, L. Wearable ear blood oxygen saturation and pulse measurement system based on PPG. In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China, 8–12 October 2018; pp. 111–116. [Google Scholar]
- Fung, P.; Dumont, G.; Ries, C.; Mott, C.; Ansermino, M. Continuous noninvasive blood pressure measurement by pulse transit time. In Proceedings of the the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; Volume 1, pp. 738–741. [Google Scholar] [CrossRef]
- Ballaji, H.K.; Correia, R.; Korposh, S.; Hayes-Gill, B.R.; Hernandez, F.U.; Salisbury, B.; Morgan, S.P. A Textile Sleeve for Monitoring Oxygen Saturation Using Multichannel Optical Fibre Photoplethysmography. Sensors 2020, 20, 6568. [Google Scholar] [CrossRef] [PubMed]
- Pentland, A. Healthwear: Medical technology becomes wearable. Computer 2004, 37, 42–49. [Google Scholar] [CrossRef]
- Maeda, Y.; Sekine, M.; Tamura, T. Relationship between measurement site and motion artifacts in wearable reflected photoplethysmography. J. Med. Syst. 2011, 35, 969–976. [Google Scholar] [CrossRef]
- Lee, S.; Shin, H.; Hahm, C. Effective PPG sensor placement for reflected red and green light, and infrared wristband-type photoplethysmography. In Proceedings of the 2016 18th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea, 31 January–3 February 2016; pp. 556–558. [Google Scholar] [CrossRef]
- scipy.signal.find_peaks—SciPy v1.13.1 Manual. 2024. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html (accessed on 12 March 2024).
- Van Gent, P.; Farah, H.; Gent, V. Heart Rate Analysis for Human Factors: Development and Validation of an Open Source Toolkit for Noisy Naturalistic Heart Rate Data. MIXIC Microscopic Simulation of Intelligent Cruise Control View Project Taking the Fast Lane View Project. In Proceedings of the 6th HUMMANIST Conference, The Hague, The Netherlands, 13–14 June 2018; Available online: https://www.researchgate.net/publication/325967542_Heart_Rate_Analysis_for_Human_Factors_Development_and_Validation_of_an_Open_Source_Toolkit_for_Noisy_Naturalistic_Heart_Rate_Data (accessed on 12 March 2024).
- Makowski, D.; Pham, T.; Lau, Z.J.; Brammer, J.C.; Lespinasse, F.; Pham, H.; Schölzel, C.; Chen, S.H.A. NeuroKit2: A Python toolbox for neurophysiological signal processing. Behav. Res. Methods 2021, 53, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M.; Norton, I.; Brearley, M.; Abbott, D.; Schuurmans, D. Systolic Peak Detection in Acceleration Photoplethysmograms Measured from Emergency Responders in Tropical Conditions. PLoS ONE 2013, 8, e76585. [Google Scholar] [CrossRef]
- Vallat, R. 2018. Available online: https://gist.github.com/raphaelvallat/55624e2eb93064ae57098dd96f259611#file-ecg_derived_respiration-ipynb (accessed on 12 March 2024).
- Zaki, W.S.W.; Correia, R.; Korposh, S.; Hayes-Gill, B.R.; Morgan, S.P. Development of wearable optical-based fibre sensor system for pulse transit time measurement. AIP Conf. Proc. 2020, 2203, 20013. [Google Scholar] [CrossRef]
- Iakovlev, D.; Hu, S.; Hassan, H.; Dwyer, V.; Ashayer-Soltani, R.; Hunt, C.; Shen, J. Smart Garment Fabrics to Enable Non-Contact Opto-Physiological Monitoring. Biosensors 2018, 8, 33. [Google Scholar] [CrossRef]
- Wang, L.; Lo, B.P.; Yang, G.Z. Multichannel reflective PPG earpiece sensor with passive motion cancellation. IEEE Trans. Biomed. Circ. Syst. 2007, 1, 235–241. [Google Scholar] [CrossRef]
- Alzahrani, A.; Hu, S.; Azorin-Peris, V.; Barrett, L.; Esliger, D.; Hayes, M.; Akbare, S.; Achart, J.; Kuoch, S. A multi-channel opto-electronic sensor to accurately monitor heart rate against motion artefact during exercise. Sensors 2015, 15, 25681–25702. [Google Scholar] [CrossRef]
- Lee, Y.K.; Jo, J.; Shin, H.S. Development and evaluation of a wristwatch-type photoplethysmography array sensor module. IEEE Sens. J. 2012, 13, 1459–1463. [Google Scholar] [CrossRef]
- Roberts, W.E. Skin type classification systems old and new. Dermatol. Clin. 2009, 27, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Prakash, E.S.; Madanmohan. Archive Additions. Adv. Physiol. Educ. 2005, 29, 1–2. [Google Scholar] [CrossRef]
- Vesna, I. Understanding Bland Altman Analysis. Biochem. Med. 2009, 19, 10–16. [Google Scholar]
- Artusi, R.; Verderio, P.; Marubini, E. Bravais-Pearson and Spearman correlation coefficients: Meaning, test of hypothesis and confidence interval. Int. J. Biol. Mark. 2002, 17, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Sandercock, G.R.H.; Shelton, C.; Bromley, P.; Brodie, D.A. Agreement between three commercially available instruments for measuring short-term heart rate variability. Physiol. Meas. 2004, 25, 1115. [Google Scholar] [CrossRef] [PubMed]
- Shcherbina, A.; Mattsson, C.M.; Waggott, D.; Salisbury, H.; Christle, J.W.; Hastie, T.; Wheeler, M.T.; Ashley, E.A. Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort. J. Pers. Med. 2017, 7, 3. [Google Scholar] [CrossRef]
- Bujan, B.; Fischer, T.; Dietz-Terjung, S.; Bauerfeind, A.; Jedrysiak, P.; Große Sundrup, M.; Hamann, J.; Schöbel, C. Clinical validation of a contactless respiration rate monitor. Sci. Rep. 2023, 13, 3480. [Google Scholar] [CrossRef]
- Nelson, B.W.; Allen, N.B. Accuracy of Consumer Wearable Heart Rate Measurement During an Ecologically Valid 24-Hour Period: Intraindividual Validation Study. JMIR mHealth uHealth 2019, 7, e10828. [Google Scholar] [CrossRef]
- Natarajan, A.; Su, H.W.; Heneghan, C.; Blunt, L.; O’Connor, C.; Niehaus, L. Measurement of respiratory rate using wearable devices and applications to COVID-19 detection. NPJ Digit. Med. 2021, 4, 136. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences; Houghton Mifflin Boston: Boston, MD, USA, 2003; Volume 663. [Google Scholar]
- Asada, H.H.; Reisner, A. Wearable sensors for human health monitoring. In Proceedings of the Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems—SPIE, Long Beach, CA, USA, 4–10 April 2006; Volume 6174, p. 617401. [Google Scholar]
- Orini, M.; Guvensen, G.; Jamieson, A.; Chaturvedi, N.; Hughes, A.D. Movement, sweating, and contact pressure as sources of heart rate inaccuracy in wearable devices. In Proceedings of the 2022 Computing in Cardiology (CinC), Tampere, Finland, 4–7 September 2022; Volume 498, pp. 1–4. [Google Scholar] [CrossRef]
- Fine, J.; Branan, K.L.; Rodriguez, A.J.; Boonya-Ananta, T.; Ajmal; Ramella-Roman, J.C.; McShane, M.J.; Coté, G.L. Sources of Inaccuracy in Photoplethysmography for Continuous Cardiovascular Monitoring. Biosensors 2021, 11, 126. [Google Scholar] [CrossRef] [PubMed]
- COPTECH WIRE & CABLE PVT Ltd. The Mysteries: How Wire and Cable Length Shape Signal Integrity and Performancele; COPTECH WIRE & CABLE PVT Ltd.: Tamil Nadu, India, 2023. [Google Scholar]
- Song, K.; Gao, J.; Wang, Z.; Ali, E.; Bilal, M.; Xie, G. A method of improving signal integrity of solder joints. In Proceedings of the 7th International Conference on Reliability of Electrical Products and Electrical Contacts, Suzhou, China, 4–6 November 2019; Volume 11. [Google Scholar]
- Esgalhado, F.; Fernandes, B.; Vassilenko, V.; Batista, A.; Russo, S. The application of deep learning algorithms for ppg signal processing and classification. Computers 2021, 10, 158. [Google Scholar] [CrossRef]
- Panwar, M.; Gautam, A.; Biswas, D.; Acharyya, A. PP-Net: A deep learning framework for PPG-based blood pressure and heart rate estimation. IEEE Sens. J. 2020, 20, 10000–10011. [Google Scholar] [CrossRef]
- Pollreisz, D.; TaheriNejad, N. Detection and removal of motion artifacts in PPG signals. Mob. Netw. Appl. 2022, 27, 728–738. [Google Scholar] [CrossRef]
- Goh, C.H.; Tan, L.K.; Lovell, N.H.; Ng, S.C.; Tan, M.P.; Lim, E. Robust PPG motion artifact detection using a 1-D convolution neural network. Comput. Methods Progr. Biomed. 2020, 196, 105596. [Google Scholar] [CrossRef] [PubMed]
- Ram, M.R.; Madhav, K.V.; Krishna, E.H.; Komalla, N.R.; Reddy, K.A. A novel approach for motion artifact reduction in PPG signals based on AS-LMS adaptive filter. IEEE Trans. Instrum. Meas. 2011, 61, 1445–1457. [Google Scholar] [CrossRef]
- Shao, H.; Chen, X. Motion artifact detection and reduction in PPG signals based on statistics analysis. In Proceedings of the 2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 3114–3119. [Google Scholar]
- Churpek, M.M.; Adhikari, R.; Edelson, D.P. The value of vital sign trends for detecting clinical deterioration on the wards. Resuscitation 2016, 102, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Cretikos, M.A.; Bellomo, R.; Hillman, K.; Chen, J.; Finfer, S.; Flabouris, A. Respiratory rate: The neglected vital sign. Med. J. Aust. 2008, 188, 657–659. [Google Scholar] [CrossRef]
- Buist, M.; Bernard, S.; Nguyen, T.V.; Moore, G.; Anderson, J. Association between clinically abnormal observations and subsequent in-hospital mortality: A prospective study. Resuscitation 2004, 62, 137–141. [Google Scholar] [CrossRef]
- Hogan, J. Why don’t nurses monitor the respiratory rates of patients? Br. J. Nurs. 2006, 15, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Semler, M.W.; Stover, D.G.; Copland, A.P.; Hong, G.; Johnson, M.J.; Kriss, M.S.; Otepka, H.; Wang, L.; Christman, B.W.; Rice, T.W. Flash mob research: A single-day, multicenter, resident-directed study of respiratory rate. Chest 2013, 143, 1740–1744. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, T.; Jonsdottir, H.; Möller, A.D.; Baldursdottir, L. Nursing documentation prior to emergency admissions to the intensive care unit. Nurs. Crit. Care 2011, 16, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Lovett, P.B.; Buchwald, J.M.; Stürmann, K.; Bijur, P. The vexatious vital: Neither clinical measurements by nurses nor an electronic monitor provides accurate measurements of respiratory rate in triage. Ann. Emerg. Med. 2005, 45, 68–76. [Google Scholar] [CrossRef]
- Leenen, J.P.L.; Dijkman, E.M.; van Hout, A.; Kalkman, C.J.; Schoonhoven, L.; Patijn, G.A. Nurses’ experiences with continuous vital sign monitoring on the general surgical ward: A qualitative study based on the Behaviour Change Wheel. BMC Nurs. 2022, 21, 60. [Google Scholar] [CrossRef]
Requirements | GY-MAX30102 | PulseSensor | MIKROE-4986 | MAX30101, MAX32664 (Qwiic) | ProtoCentral AFE4490 |
---|---|---|---|---|---|
Raw data | Yes | Yes | Yes | No | Yes |
Light | IR & Red | Green | Red | IR and Red | Red |
Dimensions | 12.7 × 12.7 mm | ø16 mm | 42.9 × 25.4 mm | 25.4 × 12.7 mm | 55 × 34 mm |
Voltage | 3.3 V | 3.3 or 5 V | 3.3 or 5 V | 3.3 or 5 V | 3.3 or 5 V |
Price | €2.95 | €24.95 | €40.87 | €42.29 | €73.65 |
Parameters | Averages ± Std |
---|---|
Age | 30.26 y ± 5.23 y |
Gender | 6 (M), 9 (F) |
Length | 174.33 cm ± 8.8 cm |
Wrist circumference | 17.6 cm ± 0.9 cm |
Skin type | 5 (II), 7 (III), 1 (IV), 2 (V) |
Supine Position | |||
---|---|---|---|
Methods | Mean Diff. | 95% Confidence Interval | ρ |
HR | [BPM] | [BPM] | |
Scipy | 5.73 | −17.31–28.77 | 0.71 |
Neurokit | 2.80 | −10.21–15.80 | 0.83 |
HeartPy * | −37.21 | −235.56–161.15 | 0.58 |
RR | [BrPM] | [BrPM] | |
Scipy | |||
Van Gent | 2.45 | −2.99–7.88 | 0.17 |
Soni | 2.50 | −3.70–8.69 | 0.19 |
Charlton | 0.15 | −6.46–6.77 | 0.48 |
Sarkar | −0.86 | −6.98–5.26 | 0.41 |
Vallat | −2.14 | −13.81–9.53 | 0.51 |
Neurokit | |||
Van Gent | 3.36 | −2.57–9.30 | 0.24 |
Soni | 4.51 | −1.79–10.81 | 0.23 |
Charlton | 2.80 | −2.78–8.37 | 0.40 |
Sarkar | 2.25 | −2.96–7.46 | 0.36 |
Vallat | 4.03 | −3.12–11.18 | 0.36 |
HeartPy * | |||
Van Gent | 3.47 | −2.66–9.59 | 0.22 |
Soni | 4.21 | −1.72–10.13 | 0.32 |
Charlton | 1.50 | −4.90–7.90 | 0.64 |
Sarkar | 0.37 | −4.93−5.67 | 0.68 |
Vallat | 2.90 | −15.83–10.03 | 0.75 |
Seated Position | |||
---|---|---|---|
Methods | Mean Diff. | 95% Confidence Interval | ρ |
HR | [BPM] | [BPM] | |
Scipy | 5.23 | −17.45–27.92 | 0.55 |
Neurokit | 0.59 | −8.64–9.81 | 0.9 |
HeartPy * | −3.65 | −46.46–39.15 | 0.56 |
RR | [BrPM] | [BrPM] | |
Scipy | |||
Van Gent | 1.82 | −1.52–5.16 | 0.68 |
Soni | 1.81 | −3.35–6.97 | 0.45 |
Charlton | 0.83 | −4.20–5.85 | 0.61 |
Sarkar | −0.04 | −4.24–4.16 | 0.67 |
Vallat | −0.96 | −8.27–6.35 | 0.32 |
Neurokit | |||
Van Gent | 2.31 | −1.81–6.42 | 0.66 |
Soni | 3.02 | −1.10–7.14 | 0.68 |
Charlton | 1.90 | −1.47–5.26 | 0.82 |
Sarkar | 1.67 | −1.85–5.18 | 0.79 |
Vallat | 2.88 | −1.29–7.04 | 0.75 |
HeartPy * | |||
Van Gent | 0.79 | −8.04–9.62 | 0.42 |
Soni | −0.31 | −12.46–11.84 | −0.1 |
Charlton | −1.37 | −13.90–11.16 | −0.22 |
Sarkar | −1.62 | −12.42–9.18 | −0.1 |
Vallat | −1.35 | −8.56–5.85 | 0.45 |
Standing Position | |||
---|---|---|---|
Methods | Mean Diff. | 95% Confidence Interval | ρ |
HR | [BPM] | [BPM] | |
Scipy | 11.19 | −17.54–39.91 | 0.51 |
Neurokit | 1.10 | −18.97–21.18 | 0.77 |
HeartPy * | −15.29 | −114.71–84.14 | 0.29 |
RR | [BrPM] | [BrPM] | |
Scipy | |||
Van Gent | 3.29 | −2.28–8.85 | 0.22 |
Soni | 1.97 | −5.05–8.99 | 0.14 |
Charlton | −1.18 | −8.68–6.32 | 0.39 |
Sarkar | −1.37 | −8.89–6.16 | 0.32 |
Vallat | −5.61 | −18.14–6.92 | 0.31 |
Neurokit | |||
Van Gent | 4.18 | −1.77–10.14 | 0.08 |
Soni | 4.68 | −1.35–10.71 | 0.30 |
Charlton | 2.25 | −4.39–8.88 | 0.47 |
Sarkar | 1.68 | −5.31–8.67 | 0.29 |
Vallat | 4.76 | −3.55–13.07 | 0.33 |
HeartPy * | |||
Van Gent | 5.64 | −0.92–12.20 | 0.04 |
Soni | 5.13 | −3.84–14.11 | −0.09 |
Charlton | 0.54 | −12.09–13.17 | 0.22 |
Sarkar | 1.10 | −10.80–13.01 | 0.26 |
Vallat | −5.15 | −18.52–8.22 | 0.30 |
Walking Position | |||
---|---|---|---|
Methods | Mean Diff. | 95% Confidence Interval | ρ |
HR | [BPM] | [BPM] | |
Scipy | 30.83 | −10.73–72.39 | −0.47 |
Neurokit | −1.58 | −23.92–20.76 | 0.29 |
HeartPy * | −42.15 | −265.18–180.87 | −0.53 |
RR | [BrPM] | [BrPM] | |
Scipy | |||
Van Gent | 4.58 | −6.55–15.72 | −0.16 |
Soni | 5.12 | −5.50–15.75 | −0.05 |
Charlton | 4.77 | −6.15–15.69 | −0.05 |
Sarkar | 3.89 | −7.15–14.92 | −0.18 |
Vallat | 1.72 | −11.52–14.96 | −0.07 |
Neurokit | |||
Van Gent | 4.18 | −1.77–10.14 | 0.23 |
Soni | 4.68 | −1.35–10.71 | 0.31 |
Charlton | 2.25 | −4.39–8.88 | 0.2 |
Sarkar | 1.68 | −5.31–8.67 | 0 |
HeartPy * | |||
Van Gent | 4.52 | −6.01–15.05 | 0.04 |
Soni | 4.07 | −6.26–14.40 | 0.17 |
Charlton | −1.10 | −12.82–10.62 | 0.29 |
Sarkar | −0.14 | −12.12–11.83 | 0.18 |
Vallat | 1.41 | −11.64–14.47 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevens, G.; Hantson, L.; Larmuseau, M.; Heerman, J.R.; Siau, V.; Verdonck, P. A Guide to Measuring Heart and Respiratory Rates Based on Off-the-Shelf Photoplethysmographic Hardware and Open-Source Software. Sensors 2024, 24, 3766. https://doi.org/10.3390/s24123766
Stevens G, Hantson L, Larmuseau M, Heerman JR, Siau V, Verdonck P. A Guide to Measuring Heart and Respiratory Rates Based on Off-the-Shelf Photoplethysmographic Hardware and Open-Source Software. Sensors. 2024; 24(12):3766. https://doi.org/10.3390/s24123766
Chicago/Turabian StyleStevens, Guylian, Luc Hantson, Michiel Larmuseau, Jan R. Heerman, Vincent Siau, and Pascal Verdonck. 2024. "A Guide to Measuring Heart and Respiratory Rates Based on Off-the-Shelf Photoplethysmographic Hardware and Open-Source Software" Sensors 24, no. 12: 3766. https://doi.org/10.3390/s24123766
APA StyleStevens, G., Hantson, L., Larmuseau, M., Heerman, J. R., Siau, V., & Verdonck, P. (2024). A Guide to Measuring Heart and Respiratory Rates Based on Off-the-Shelf Photoplethysmographic Hardware and Open-Source Software. Sensors, 24(12), 3766. https://doi.org/10.3390/s24123766