Study on an Automatic Classification Method for Determining the Malignancy Grade of Glioma Pathological Sections Based on Hyperspectral Multi-Scale Spatial–Spectral Fusion Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Structure
2.2. Micro-Hyperspectral Data Collection
2.3. Spectral Data Preprocessing
2.4. Experimental Setup
2.5. Data Dimensionality Reduction
2.6. Identify Model
3. Results
3.1. Model Parameter Analysis
3.1.1. Image Block Size Analysis
3.1.2. Model Learning Rate Analysis
3.2. Ablation Experiment
3.2.1. Effectiveness of Classification Mechanisms
3.2.2. Effectiveness of Attention Mechanisms
3.3. Comparison between the Improved Model and the Traditional Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weller, M.; Wick, W.; Aldape, K.; Brada, M.; Berger, M.; Pfister, S.M.; Nishikawa, R.; Rosenthal, M.; Wen, P.Y.; Stupp, R.; et al. Glioma. Nat. Rev. Dis. Prim. 2015, 1, 15017. [Google Scholar] [CrossRef] [PubMed]
- Macyszyn, L.; Akbari, H.; Pisapia, J.M.; Da, X.; Attiah, M.; Pigrish, V.; Bi, Y.; Pal, S.; Davuluri, R.V.; Roccograndi, L.; et al. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-Oncology 2015, 18, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Kros, J.M.; Gorlia, T.; Kouwenhoven, M.C.; Zheng, P.P.; Collins, V.P.; Figarella-Branger, D.; Giangaspero, F.; Giannini, C.; Mokhtari, K.; Mørk, S.J.; et al. Panel review of anaplastic oligodendroglioma from European Organization for Research and Treatment of Cancer Trial 26951: Assessment of consensus in diagnosis, influence of 1p/19q loss, and correlations with outcome. J. Neuropathol. Exp. Neurol. 2007, 66, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Janowczyk, A.; Madabhushi, A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J. Pathol. Inform. 2016, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, D.M.; Rong, R.; Zhan, X.; Fujimoto, J.; Liu, H.; Minna, J.; Wistuba, I.I.; Xie, Y.; Xiao, G. Artificial intelligence in lung cancer pathology image analysis. Cancers 2019, 11, 1673. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, R.S.; Graham, A.R.; Richter, L.C.; Barker, G.P.; Krupinski, E.A.; Lopez, A.M.; Erps, K.A.; Bhattacharyya, A.K.; Yagi, Y.; Gilbertson, J.R. Overview of telepathology, virtual microscopy, and whole slide imaging: Prospects for the future. Hum. Pathol. 2009, 40, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Xu, R.; Mei, H.; Zhang, L.; Yu, Q.; Liu, R.; Fan, B. Application of enhanced T1WI of MRI Radiomics in Glioma grading. Int. J. Clin. Pract. 2022, 2022, 3252574. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.; Cheng, Y.; Teng, Y.; Guo, W.; Xu, H.; Ou, X.; Wang, J.; Li, H.; Ma, X.; et al. Ability of radiomics in differentiation of anaplastic oligodendroglioma from atypical low-grade oligodendroglioma using machine-learning approach. Front. Oncol. 2019, 9, 1371. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Huang, S.; Pan, X.; Liao, X.; Yang, R.; Liu, J. Machine learning-based radiomics predicting tumor grades and expression of multiple pathologic biomarkers in gliomas. Front. Oncol. 2020, 10, 1676. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef]
- Bjorgan, A.; Denstedt, M.; Milanič, M.; Paluchowski, L.A.; Randeberg, L.L. Vessel contrast enhancement in hyperspectral images. In Proceedings of the Optical Biopsy XIII: Toward Real-Time Spectroscopic Imaging and Diagnosis, San Francisco, CA, USA, 10–11 February 2015; Volume 9318, pp. 52–61. [Google Scholar]
- Akbari, H.; Kosugi, Y.; Kojima, K.; Tanaka, N. Blood vessel detection and artery-vein differentiation using hyperspectral imaging. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 2–6 September 2009; pp. 1461–1464. [Google Scholar]
- Akbari, H.; Kosugi, Y.; Kojima, K.; Tanaka, N. Detection and analysis of the intestinal ischemia using visible and invisible hyperspectral imaging. IEEE Trans. Biomed. Eng. 2010, 57, 2011–2017. [Google Scholar] [CrossRef] [PubMed]
- Mordant, D.; Al-Abboud, I.; Muyo, G.; Gorman, A.; Sallam, A.; Ritchie, P.; Harvey, A.; McNaught, A. Spectral imaging of the retina. Eye 2011, 25, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Milanic, M.; Bjorgan, A.; Larsson, M.; Strömberg, T.; Randeberg, L.L. Detection of hypercholesterolemia using hyperspectral imaging of human skin. In Proceedings of the European Conference on Biomedical Optics, Munich, Germany, 21–25 June 2015; p. 95370C. [Google Scholar]
- Fabelo, H.; Ortega, S.; Kabwama, S.; Callico, G.M.; Bulters, D.; Szolna, A.; Pineiro, J.F.; Sarmiento, R. HELICoiD project: A new use of hyperspectral imaging for brain cancer detection in real-time during neurosurgical operations. In Proceedings of the Hyperspectral Imaging Sensors: Innovative Applications and Sensor Standards 2016, Baltimore, MD, USA, 20 April 2016; Volume 9860, p. 986002. [Google Scholar]
- Ogihara, H.; Hamamoto, Y.; Fujita, Y.; Goto, A.; Nishikawa, J.; Sakaida, I. Development of a gastric cancer diagnostic support system with a pattern recognition method using a hyperspectral camera. J. Sens. 2016, 2016, 1803501. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Li, Q. Tongue tumor detection in medical hyperspectral images. Sensors 2011, 12, 162–174. [Google Scholar] [CrossRef]
- Akbari, H.; Halig, L.V.; Schuster, D.M.; Osunkoya, A.; Master, V.; Nieh, P.T.; Chen, G.Z.; Fei, B. Hyperspectral imaging and quantitative analysis for prostate cancer detection. J. Biomed. Opt. 2012, 17, 076005. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, T.; Zheng, Y.; Yin, X. Recognition of liver tumors by predicted hyperspectral features based on patient’s Computed Tomography radiomics features. Photodiagnosis Photodyn. Ther. 2023, 42, 103638. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, B.; Wang, Y.; Zhou, C.; Zou, D.; Vonsky, M.S.; Mitrofanova, L.B.; Li, Q. Dual-modality image feature fusion network for gastric precancerous lesions classification. Biomed. Signal Process. Control 2024, 87, 105516. [Google Scholar] [CrossRef]
- Du, J.; Tao, C.; Xue, S.; Zhang, Z. Joint Diagnostic Method of Tumor Tissue Based on Hyperspectral Spectral-Spatial Transfer Features. Diagnostics 2023, 13, 2002. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Qiu, S.; Li, Q. Hyperspectral image segmentation of cholangiocarcinoma based on Fourier transform channel attention network. J. Image Graph. 2021, 26, 1836–1846. [Google Scholar]
- Zhang, L.; Ye, N.; Ma, L. Hyperspectral Band Selection Based on Improved Particle Swarm Optimization. Spectrosc. Spectr. Anal. 2021, 41, 3194–3199. [Google Scholar]
- Mantripragada, K.; Dao, P.D.; He, Y.; Qureshi, F.Z. The effects of spectral dimensionality reduction on hyperspectral pixel classification: A case study. PLoS ONE 2022, 17, e0269174. [Google Scholar] [CrossRef]
- Chen, R.; Luo, T.; Nie, J.; Chu, Y. Blood cancer diagnosis using hyperspectral imaging combined with the forward searching method and machine learning. Anal. Methods 2023, 15, 3885–3892. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Wang, Q.; Song, G. Selecting informative bands for partial least squares regressions improves their goodness-of-fits to estimate leaf photosynthetic parameters from hyperspectral data. Photosynth. Res. 2022, 151, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.H.; Li, S.J.; Fan, M.R.; Guo, Y.G.; Chang, N.; Wang, J.J. Spectral quantitative analysis of complex samples based on the extreme learning machine. Anal. Methods 2016, 8, 4674–4679. [Google Scholar] [CrossRef]
- Kifle, N.; Teti, S.; Ning, B.; Donoho, D.A.; Katz, I.; Keating, R.; Cha, R.J. Pediatric Brain Tissue Segmentation Using a Snapshot Hyperspectral Imaging (sHSI) Camera and Machine Learning Classifier. Bioengineering 2023, 10, 1190. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Hu, B.; Zhang, Z. Study on the classification method of gastric cancer tissues based on convolutional neural network and micro-hyperspectral. Acta Opt. 2018, 38, 7. [Google Scholar]
- Tian, C.; Hao, D.; Ma, M.; Zhuang, J.; Mu, Y.; Zhang, Z.; Zhao, X.; Lu, Y.; Zuo, X.; Li, W. Graded diagnosis of Helicobacter pylori infection using hyperspectral images of gastric juice. J. Biophotonics 2023, 17, e202300254. [Google Scholar] [CrossRef] [PubMed]
- Halicek, M.; Shahedi, M.; Little, J.V.; Chen, A.Y.; Myers, L.L.; Sumer, B.D.; Fei, B. Detection of Squamous Cell Carcinoma in Digitized Histological Images from the Head and Neck Using Convolutional Neural Networks. In Medical Imaging 2019: Digital Pathology; SPIE: Philadelphia, PA, USA, 2019; p. 109560K. [Google Scholar]
- Iizuka, O.; Kanavati, F.; Kato, K.; Rambeau, M.; Arihiro, K.; Tsuneki, M. Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours. Sci. Rep. 2019, 10, 1504. [Google Scholar] [CrossRef] [PubMed]
- Geijs, D.J.; Pinckaers, H.; Amir, A.L.; Litjens, G.J.S. End-to-end classification on basal-cell carcinoma histopathology whole-slides images. In Medical Imaging 2021: Digital Pathology; SPIE: Philadelphia, PA, USA, 2011; p. 116037. [Google Scholar]
- Wang, K.S.; Yu, G.; Xu, C.; Meng, X.H.; Zhou, J.; Zheng, C.; Deng, Z.; Shang, L.; Liu, R.; Su, S.; et al. Accurate diagnosis of colorectal cancer based on histopathology images using artificial intelligence. BMC Med. 2021, 19, 76. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, M.; Sun, S. DetexNet: Accurately Diagnosing Frequent and Challenging Pediatric Malignant Tumors. IEEE Trans. Med. Imaging 2021, 40, 395–404. [Google Scholar] [CrossRef]
OA% | AA% | Kappa | ||||||
---|---|---|---|---|---|---|---|---|
Normal | Grade 1 | Grade 2 | Grade 3 | Grade 4 | ||||
Simulated | SVM | 83.381 | 82.186 | 83.292 | 83.347 | 81.911 | 82.823 | 0.875 |
annealing | DT | 79.291 | 76.322 | 78.676 | 78.747 | 77.452 | 78.097 | 0.776 |
algorithm (SAA) | RFR | 77.852 | 74.667 | 75.781 | 74.575 | 73.866 | 75.348 | 0.648 |
Successive | SVM | 83.182 | 83.823 | 81.456 | 82.902 | 81.824 | 82.637 | 0.68 |
Projections | DT | 77.442 | 76.714 | 77.185 | 77.943 | 78.538 | 77.564 | 0.702 |
Algorithm (SPA) | RFR | 97.297 | 78.383 | 75.267 | 71.332 | 68.989 | 78.253 | 0.3803 |
Learning Rate | OA% | AA% | ||||
---|---|---|---|---|---|---|
Normal | Grade 1 | Grade 2 | Grade 3 | Grade 4 | ||
0.1 | 97.602 | 94.633 | 97.792 | 97.863 | 95.628 | 96.704 |
0.005 | 97.681 | 97.587 | 97.796 | 96.216 | 98.982 | 97.652 |
0.001 | 99.705 | 98.746 | 97.633 | 96.992 | 98.785 | 97.32 |
0.0005 | 99.701 | 98.874 | 97.342 | 96.99 | 98.689 | 98.319 |
Classification Mechanism Settings | FS | FR | FRL2 | FSL2 | |
---|---|---|---|---|---|
95.33 | 94.37 | 96.64 | 97.46 | ||
Evaluation indicators | 91.60 | 90.59 | 94.38 | 96.38 | |
91.24 | 92.88 | 95.27 | 98.28 |
Settings | Without | Spectral | Spatial | This Study | |
---|---|---|---|---|---|
90.37 | 90.89 | 90.37 | 97.46 | ||
Evaluation indicators | 84.59 | 86.66 | 86.96 | 96.38 | |
78.62 | 82.67 | 82.48 | 98.28 |
Hierarchical Model | OA/% | AA/% | Kappa | Parameter Quantity | ||||
---|---|---|---|---|---|---|---|---|
Normal | Grade 1 | Grade 2 | Grade 3 | Grade 4 | ||||
SE-ResNet | 89.687 | 88.663 | 86.383 | 84.562 | 84.353 | 86.729 | 0.881 | 123,780 |
SMLMER-ResNet | 99.705 | 98.746 | 97.633 | 96.992 | 98.785 | 97.32 | 0.954 | 126,540 |
SVM | 83.381 | 82.186 | 83.292 | 83.347 | 81.911 | 83.297 | 0.875 | \ |
DT | 79.291 | 76.322 | 78.676 | 78.747 | 77.452 | 77.766 | 0.833 | \ |
RFR | 77.852 | 74.667 | 75.781 | 74.575 | 73.866 | 75.926 | 0.815 | \ |
CNN | 82.181 | 81.112 | 83.296 | 82.158 | 79.132 | 82.926 | 0.866 | \ |
2D_CNN | 86.589 | 87.312 | 86.729 | 87.132 | 79.132 | 86.630 | 0.889 | \ |
3D_CNN | 89.283 | 88.382 | 86.256 | 87.696 | 89.587 | 90.862 | 0.934 | \ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Yang, J.; Wang, J.; Zhao, Z.; Wang, M.; Sun, C.; Song, N.; Feng, S. Study on an Automatic Classification Method for Determining the Malignancy Grade of Glioma Pathological Sections Based on Hyperspectral Multi-Scale Spatial–Spectral Fusion Features. Sensors 2024, 24, 3803. https://doi.org/10.3390/s24123803
Chen J, Yang J, Wang J, Zhao Z, Wang M, Sun C, Song N, Feng S. Study on an Automatic Classification Method for Determining the Malignancy Grade of Glioma Pathological Sections Based on Hyperspectral Multi-Scale Spatial–Spectral Fusion Features. Sensors. 2024; 24(12):3803. https://doi.org/10.3390/s24123803
Chicago/Turabian StyleChen, Jiaqi, Jin Yang, Jinyu Wang, Zitong Zhao, Mingjia Wang, Ci Sun, Nan Song, and Shulong Feng. 2024. "Study on an Automatic Classification Method for Determining the Malignancy Grade of Glioma Pathological Sections Based on Hyperspectral Multi-Scale Spatial–Spectral Fusion Features" Sensors 24, no. 12: 3803. https://doi.org/10.3390/s24123803
APA StyleChen, J., Yang, J., Wang, J., Zhao, Z., Wang, M., Sun, C., Song, N., & Feng, S. (2024). Study on an Automatic Classification Method for Determining the Malignancy Grade of Glioma Pathological Sections Based on Hyperspectral Multi-Scale Spatial–Spectral Fusion Features. Sensors, 24(12), 3803. https://doi.org/10.3390/s24123803