Data Evaluation of a Low-Cost Sensor Network for Atmospheric Particulate Matter Monitoring in 15 Municipalities in Serbia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Low-Cost Sensor Network
2.2. Comparison with Data from the State AQ Monitoring Network
3. Results and Discussion
3.1. PM2.5 and PM10 Measurements by SEPA Stations and Low-Cost Sensor Networks
3.2. PM10 and PM2.5 Measurements by Low-Cost Sensor Networks
- PM10: very good 0–20 µg/m3; good 20–40 µg/m3; medium 40–50 µg/m3; poor 50–100 µg/m3; very poor 100–150 µg/m3; and extremely poor 150–1200 µg/m3.
- PM2.5: very good 0–10 µg/m3; good 10–20 µg/m3; medium 20–25 µg/m3; poor 25–50 µg/m3; very poor 50–75 µg/m3; and extremely poor 75–800 µg/m3.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
PM1 [μg/m3] | PM2.5 [μg/m3] | PM10 [μg/m3] | SO2 [μg/m3] | NO2 [μg/m3] | T [°C] | RH [%] | |
---|---|---|---|---|---|---|---|
2nd perc. | 2.79 | 3.50 | 4.63 | 3.16 | 7.95 | 2.29 | 33.23 |
98th perc. | 86.30 | 90.36 | 118.24 | 27.14 | 123.21 | 17.20 | 89.63 |
mean | 22.03 | 24.68 | 35.02 | 9.98 | 50.88 | 8.23 | 62.04 |
median | 16.28 | 19.08 | 27.34 | 7.55 | 48.63 | 7.75 | 61.14 |
PM1 [μg/m3] | PM2.5 [μg/m3] | PM10 [μg/m3] | SO2 [μg/m3] | NO2 [μg/m3] | T [°C] | RH [%] | |
---|---|---|---|---|---|---|---|
2nd perc. | / | 3.27 | 4.40 | 5.60 | 3.38 | 4.00 | 30.55 |
98th perc. | / | 44.16 | 59.93 | 21.99 | 38.92 | 22.61 | 92.24 |
mean | / | 15.32 | 21.15 | 8.22 | 11.70 | 13.28 | 64.66 |
median | / | 13.50 | 18.80 | 6.85 | 9.46 | 13.16 | 68.79 |
References
- World Health Organization. Air Quality Guidelines-Update 2021; WHO Regional Office for Europe: Copenhagen, Denmark, 2021. [Google Scholar]
- IARC: Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths. IARC Press Release. 2013. Available online: http://www.iarc.fr/en/media-centre/pr/2013/pdfs/pr221_E.pdf (accessed on 1 April 2024).
- WHO, National Air Quality Standards. Available online: https://www.who.int/tools/air-quality-standards (accessed on 1 April 2024).
- Jovašević-Stojanović, M.; Bartonova, A.; Topalović, D.; Lazović, I.; Pokrić, B.; Ristovski, Z. On the use of small and cheaper sensors and devices for indicative citizen-based monitoring of respirable particulate matter. Environ. Pollut. 2015, 206, 696–704. [Google Scholar] [CrossRef]
- Giordano, M.R.; Malings, C.; Pandis, S.N.; Presto, A.A.; McNeill, V.F.; Westervelt, D.M.; Beekmann, M.; Subramanian, R. From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. J. Aerosol Sci. 2021, 158, 105833. [Google Scholar] [CrossRef]
- Idrees, Z.; Zheng, L. Low-cost air pollution monitoring systems: A review of protocols and enabling technologies. J. Ind. Inf. Integr. 2020, 17, 100123. [Google Scholar] [CrossRef]
- Ahangar, F.E.; Frank, R.F.; Akula, V. Using Low-Cost Air Quality Sensor Networks to Improve the Spatial and Temporal Resolution of Concentration Maps. Int. J. Environ. Res. Public Health 2019, 16, 1252. [Google Scholar] [CrossRef]
- Johnston, S.J.; Basford, P.J.; Bulot, F.M.J.; Apetroaie-Cristea, M.; Easton, N.H.C.; Davenport, C.; Foster, G.L.; Loxham, M.; Morris, A.K.; Cox, S.J. City scale particulate matter monitoring using LoRaWAN based air quality IoT devices. Sensors 2019, 19, 209. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Giuliano, G.; Habre, R. Estimating hourly PM2.5 concentrations at the neighborhood scale using a low-cost air sensor network: A Los Angeles case study. Environ. Res. 2021, 195, 110653. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Hagler, G.; Williams, R.; Sharpe, R.; Brown, R.; Garver, D.; Judge, R.; Caudill, M.; Rickard, J.; Davis, M.; et al. Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos. Meas. Tech. 2016, 9, 5281–5292. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.Y.; Zhang, H.; Hammer, M.; Zhan, Y.; Kenney, D.; Martin, R.V.; Biswas, P. Integrating fixed monitoring systems with low-cost sensors to create high-resolution air quality maps for the northern China plain region. ACS Earth Space Chem. 2021, 5, 3022–3035. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Chao, C.-Y.; Chien, C.-H.; Wu, C.-Y.; Luo, C.H.; Chen, L.J.; Biswas, P. Integrating low-cost air quality sensor networks with fixed and satellite monitoring systems to study ground-level PM2.5. Atmos. Environ. 2020, 223, 117293. [Google Scholar] [CrossRef]
- Bisignano, A.; Carotenuto, F.; Zaldei, A.; Giovannini, L. Field calibration of a low-cost sensors network to assess trafficrelated air pollution along the Brenner highway. Atmos. Environ. 2022, 275, 119008. [Google Scholar] [CrossRef]
- Amoah, N.A.; Xu, G.; Wang, Y.; Li, J.; Zou, Y.; Nie, B. Application of low-cost particulate matter sensors for air quality monitoring and exposure assessment in underground mines: A review. Int. J. Miner. Met. Mater. 2022, 29, 1475–1490. [Google Scholar] [CrossRef]
- Zafra-Pérez, A.; Boente, C.; de la Campa, A.S.; Gómez-Galán, J.A.; de la Rosa, J.D. A novel application of mobile low-cost sensors for atmospheric particulate matter monitoring in open-pit mines. Environ. Technol. Innov. 2023, 29, 102974. [Google Scholar] [CrossRef]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Macías-Hernández, B.; Tello-Leal, E.; Barrios, S.O.; Leiva-Guzmán, M.A.; Toro, A.R. Effect of environmental conditions on the performance of a ow-cost atmospheric particulate matter sensor. Urban Clim. 2023, 52, 101753. [Google Scholar] [CrossRef]
- Tabandeh, S.; et al. Sensor Network Metrology: Current State and Future Directions. In Proceedings of the XXIV IMEKO World Congress “Think Metrology”, Hamburg, Germany, 26–29 August 2024. [Google Scholar]
- Mao, F.; Khamis, K.; Krause, S.; Clark, J.; Hannah, D.M. Low-Cost Environmental Sensor Networks: Recent Advances and Future Directions. Front. Earth Sci. 2019, 7, 221. [Google Scholar] [CrossRef]
- Rose Eilenberg, S.; Subramanian, R.; Malings, C.; Hauryliuk, A.; Presto, A.A.; Robinson, A.L. Using a network of lower-cost monitors to identify the influence of modifiable factors driving spatial patterns in fine particulate matter concentrations in an urban environment. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 949–961. [Google Scholar] [CrossRef] [PubMed]
- Raheja, G.; Sabi, K.; Sonla, H.; Gbedjangni, E.K.; McFarlane, C.M.; Hodoli, C.G.; Westervelt, D.M. A network of field-calibrated low-cost sensor measurements of PM2. 5 in Lomé, Togo, over one to two years. ACS Earth Space Chem. 2022, 6, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.; Vogt, M.; Haugen, R.; Hassani, A.; Castell, N.; Dauge, F.R.; Bartonova, A. Deployment and Evaluation of a Network of Open Low-Cost Air Quality Sensor Systems. Atmosphere 2023, 14, 540. [Google Scholar] [CrossRef]
- Borrego, C.; Costa, A.M.; Ginja, J.; Amorim, M.; Coutinho, M.; Karatzas, K.; Sioumis, T.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S.; et al. Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise. Atmos. Environ. 2016, 147, 246–263. [Google Scholar] [CrossRef]
- Schilt, U.; Barahona, B.; Buck, R.; Meyer, P.; Kappani, P.; Möckli, Y.; Meyer, M.; Schuetz, P. Low-Cost sensor node for air quality monitoring: Field tests and validation of particulate matter measurements. Sensors 2023, 23, 794. [Google Scholar] [CrossRef]
- Okorn, K.; Iraci, L.T. An overview of outdoor low-cost gas-phase air quality sensor deployments: Current efforts, trends, and limitations. EGUsphere [preprint] 2024. [Google Scholar] [CrossRef]
- Carotenuto, F.; Bisignano, A.; Brilli, L.; Gualtieri, G.; Giovannini, L. Low-cost air quality monitoring networks for long-term field campaigns: A review. Meteorol. Appl. 2023, 30, e2161. [Google Scholar] [CrossRef]
- Wesseling, J.; de Ruiter, H.; Blokhuis, C.; Drukker, D.; Weijers, E.; Volten, H.; Vonk, J.; Gast, L.; Voogt, M.; Zandveld, P.; et al. Development and implementation of a platform for public information on air quality, sensor measurements, and citizen Science. Atmosphere 2019, 10, 445. [Google Scholar] [CrossRef]
- Rai, A.C.; Kumar, P.; Pilla, F.; Skouloudis, A.N.; Di Sabatino, S.; Ratti, C.; Yasar, A.; Rickerby, D. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 2017, 607, 691–705. [Google Scholar] [CrossRef]
- Sokhi, R.S.; Moussiopoulos, N.; Baklanov, A.; Bartzis, J.; Coll, I.; Finardi, S.; Friedrich, R.; Geels, C.; Grönholm, T.; Halenka, T.; et al. Advances in air quality research–current and emerging challenges. Atmos. Chem. Phys. 2022, 22, 4615–4703. [Google Scholar] [CrossRef]
- Alfano, B.; Barretta, L.; Del Giudice, A.; De Vito, S.; Di Francia, G.; Esposito, E.; Formisano, F.; Massera, E.; Miglietta, M.L.; Polichetti, T. A review of low-cost particulate matter sensors from the developers’ perspectives. Sensors 2020, 20, 6819. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, D.B.; Kleut, D.N.; Davidović, M.D.; Jovašević-Stojanović, M.V.; Bartonova, A.; Lepioufle, J.M. Low-processing data enrichment and calibration for PM2.5 low-cost sensors. Therm. Sci. 2022, 27, 2229–2240. [Google Scholar]
- Seto, E.; Carvlin, G.; Austin, E.; Shirai, J.; Bejarano, E.; Lugo, H.; Olmedo, L.; Calderas, A.; Jerrett, M.; King, G.; et al. Next-generation community air quality sensors for identifying air pollution episodes. Int. J. Environ. Res. Public Health 2019, 16, 3268. [Google Scholar] [CrossRef]
- Williams, D.E. Low-cost sensor networks: How do we know the data are reliable? ACS Sens. 2019, 4, 2558–2565. [Google Scholar] [CrossRef]
- Ward, F.; Lowther-Payne, H.J.; Halliday, E.C.; Dooley, K.; Joseph, N.; Livesey, R.; Moran, P.; Kirby, S.; Cloke, J. Engaging communities in addressing air quality: A scoping review. Environ. Health 2022, 21, 89. [Google Scholar] [CrossRef]
- Kelly, K.E.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ Pollut. 2017, 221, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Levy Zamora, M.; Xiong, F.; Gentner, D.; Kerkez, B.; Kohrman-Glaser, J.; Koehler, K. Field and Laboratory Evaluations of the Low-Cost Plantower Particulate Matter Sensor. Environ. Sci. Technol. 2019, 53, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.-L. Evaluating the feasibility of a personal particle exposure monitor in outdoor and indoor microenvironments in Shanghai, China. Int. J. Environ. Health Res. 2019, 29, 209–220. [Google Scholar]
- Jiang, Y.; Zhu, X.; Chen, C.; Ge, Y.; Wang, W.; Zhao, Z.; Cai, J.; Kan, H. On-field test and data calibration of a low-cost sensor for fine particles exposure assessment. Ecotoxicol. Environ. Saf. 2021, 211, 111958. [Google Scholar] [CrossRef]
- European Air Quality Index. Available online: https://www.eea.europa.eu/themes/air/air-quality-index (accessed on 1 April 2024).
- Kizel, F.; Etzion, Y.; Shafran-Nathan, R.; Levy, I.; Fishbain, B.; Bartonova, A.; Broday, D.M. Node-to-node field calibration of wireless distributed air pollution sensor network. Environ. Pollut. 2018, 233, 900–909. [Google Scholar] [CrossRef]
- Peltier, R.E.; Castell, N.; Clements, A.L.; Dye, T.; Hüglin, C.; Kroll, J.H.; Lung, S.C.C.; Ning, Z.; Parsons, M.; Penza, M.; et al. An Update on Low-Cost Sensors for the Measurement of Atmospheric Composition; WMO: Geneva, Switzerland, 2020. [Google Scholar]
Municipality | School | Distance from SEPA |
---|---|---|
M1 | S1 | 0.175 km |
S2 | 1.00 km | |
S3 | 1.05 km | |
M4 | S1 | 1.54 km |
S2 | 1.50 km | |
S3 | 3.31 km | |
M6 | S1 | 0.87 km |
S2 | 2.47 km | |
S3 | 4.75 km | |
M8 | S1 | 0.87 km |
S2 | 1.08 km | |
S3 | 12.90 km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojanović, D.B.; Kleut, D.; Davidović, M.; Živković, M.; Ramadani, U.; Jovanović, M.; Lazović, I.; Jovašević-Stojanović, M. Data Evaluation of a Low-Cost Sensor Network for Atmospheric Particulate Matter Monitoring in 15 Municipalities in Serbia. Sensors 2024, 24, 4052. https://doi.org/10.3390/s24134052
Stojanović DB, Kleut D, Davidović M, Živković M, Ramadani U, Jovanović M, Lazović I, Jovašević-Stojanović M. Data Evaluation of a Low-Cost Sensor Network for Atmospheric Particulate Matter Monitoring in 15 Municipalities in Serbia. Sensors. 2024; 24(13):4052. https://doi.org/10.3390/s24134052
Chicago/Turabian StyleStojanović, Danka B., Duška Kleut, Miloš Davidović, Marija Živković, Uzahir Ramadani, Maja Jovanović, Ivan Lazović, and Milena Jovašević-Stojanović. 2024. "Data Evaluation of a Low-Cost Sensor Network for Atmospheric Particulate Matter Monitoring in 15 Municipalities in Serbia" Sensors 24, no. 13: 4052. https://doi.org/10.3390/s24134052
APA StyleStojanović, D. B., Kleut, D., Davidović, M., Živković, M., Ramadani, U., Jovanović, M., Lazović, I., & Jovašević-Stojanović, M. (2024). Data Evaluation of a Low-Cost Sensor Network for Atmospheric Particulate Matter Monitoring in 15 Municipalities in Serbia. Sensors, 24(13), 4052. https://doi.org/10.3390/s24134052