Displacement Assay in a Polythiophene Sensor System Based on Supramacromolecuar Disassembly-Caused Emission Quenching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Polythiophene-Ensemble Solutions and Their Films
2.2. Acquisition and Analysis of Fluorescence Properties of Polythiophene-Ensemble Films
- (1)
- For the characterization of the spectrographic properties of the prepared film, the fluorescent spectrum of the polythiophene-ensemble film was measured using an optical fiber spectrometer. An excitation light (λex: 475 nm) was irradiated to the film through the optical fiber from a UV light source coupled with a single-band bandpass filter.
- (2)
- To evaluate the association and dissociation between each polymer and analyte, the fluorescent image of the polythiophene-ensemble film was captured using a cooled CCD camera equipped with a longwave-pass filter (>520 nm) at the front of the camera lens under UV irradiation using an LED lamp (λex: 470 nm). The exposure time for the image acquisition in each experiment was 0.5 s. After the image acquisition, the fluorescence image was processed with Image J/Fiji software (https://downloads.imagej.net/fiji/ (accessed on 5 June 2024)) on a Windows PC. In this study, the pixel intensity converted from the acquired image was utilized as the fluorescence intensity. The converted intensity value was normalized as (I − I0)/I0. Here, I and I0 denote the fluorescence intensity of the polythiophene-ensemble film upon the addition of components (Amt-TBC, TBC, or analytes) and the intensity in the absence of components, respectively. Therefore, an increase in (I − I0)/I0 meant that the film exhibited a “turn-on” fluorescence enhancement. In contrast, a decrease in (I − I0)/I0 denoted that the film behaved in a “turn-off” quenching mode. In addition, IpH-basic denotes the fluorescence intensity of the film upon the addition of water containing TBABr (100 mM) at pH 11.67.
3. Results
3.1. Investigation of SmAIEE in a Polythiophene Ensemble
3.2. Chemical Stimuli Responsiveness in a Polythiophene Ensemble
3.3. Analyte Selectivity in a Polythiophene Ensemble-Based Sensor Film
3.4. Electrolyte Dependency for the Sensing Ability of the Polythiophene Ensemble
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heeger, A.J. Semiconducting polymers: The Third Generation. Chem. Soc. Rev. 2010, 39, 2354–2371. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.L.; Zhou, G.J.; Wong, W.Y. Recent design tactics for high performance white polymer light-emitting diodes. J. Mater. Chem. C 2014, 2, 1760–1778. [Google Scholar] [CrossRef]
- Youssef, K.; Li, Y.; O’Keeffe, S.; Li, L.; Pei, Q. Light-Emitting Conjugated Polymers: Fundamentals of Materials Selection for Light-Emitting Electrochemical Cells. Adv. Funct. Mater. 2020, 30, 1909102. [Google Scholar] [CrossRef]
- Hu, Z.J.; Willard, A.P.; Ono, R.J.; Bielawski, C.W.; Rossky, P.J.; Vanden Bout, D.A. An insight into non-emissive excited states in conjugated polymers. Nat. Commun. 2015, 6, 8246. [Google Scholar] [CrossRef] [PubMed]
- Frampton, M.J.; Anderson, H.L. Insulated Molecular Wires. Angew. Chem. Int. Ed. 2007, 46, 1028–1064. [Google Scholar] [CrossRef] [PubMed]
- Sugiyasu, K.; Honsho, Y.; Harrison, R.M.; Sato, A.; Yasuda, T.; Seki, S.; Takeuchi, M. A self-threading polythiophene: Defect-free insulated molecular wires endowed with long effective conjugation length. J. Am. Chem. Soc. 2010, 132, 14754–14756. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.W.; Joly, G.D.; Swager, T.M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 2007, 107, 1339–1386. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Bender, M.; Seehafer, K.; Bunz, U.H.F. Identification of White Wines by using Two Oppositely Charged Poly(p-phenyleneethynylene)s Individually and in Complex. Angew. Chem. Int. Ed. 2016, 55, 7689–7692. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.W.; Wu, X.F.; Li, H.B.; Tong, H.; Wang, L.X. Selective Detection of TNT and Picric Acid by Conjugated Polymer Film Sensors with Donor–Acceptor Architecture. Macromolecules 2011, 44, 5089–5092. [Google Scholar] [CrossRef]
- Dai, D.H.; Yang, J.; Yang, Y.W. Supramolecular Assemblies with Aggregation-Induced Emission Properties for Sensing and Detection. Chem. Eur. J. 2022, 28, e202103185. [Google Scholar] [CrossRef]
- Leventis, A.; Royakkers, J.; Rapidis, A.G.; Goodeal, N.; Corpinot, M.K.; Frost, J.M.; Bučar, D.K.; Blunt, M.O.; Cacialli, F.; Bronstein, H. Highly Luminescent Encapsulated Narrow Bandgap Polymers Based on Diketopyrrolopyrrole. J. Am. Chem. Soc. 2018, 140, 1622–1626. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.H.; Li, Z.; Yang, J.; Wang, C.Y.; Wu, J.R.; Wang, Y.; Zhang, D.M.; Yang, Y.W. Supramolecular Assembly-Induced Emission Enhancement for Efficient Mercury(II) Detection and Removal. J. Am. Chem. Soc. 2019, 141, 4756–4763. [Google Scholar] [CrossRef] [PubMed]
- Noro, A.; Ishihara, K.; Matsushita, Y. Nanophase-Separated Supramolecular Assemblies of Two Functionalized Polymers via Acid–Base Complexation. Macromolecules 2011, 44, 6241–6244. [Google Scholar] [CrossRef]
- Nelson, T.L.; O’Sullivan, C.; Greene, N.T.; Maynor, M.S.; Lavigne, J.J. Cross-reactive conjugated polymers: Analyte-specific aggregative response for structurally similar diamines. J. Am. Chem. Soc. 2006, 128, 5640–5641. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Skinner, M.; Yu, H.; Oh, J.H.; Briseno, A.L.; Emrick, T.; Kim, B.J.; Hayward, R.C. Water Processable Polythiophene Nanowires by Photo-Cross-Linking and Click-Functionalization. Nano Lett. 2015, 15, 5689–5695. [Google Scholar] [CrossRef]
- Kajita, T.; Noro, A.; Matsushita, Y. Design and properties of supramolecular elastomers. Polymer 2017, 128, 297–310. [Google Scholar] [CrossRef]
- Kim, B.S.; Chen, L.; Gong, J.P.; Osada, Y. Titration Behavior and Spectral Transitions of Water-Soluble Polythiophene Carboxylic Acids. Macromolecules 1999, 32, 3964–3969. [Google Scholar] [CrossRef]
- Hall, H.K., Jr. Correlation of the Base Strengths of Amines. J. Am. Chem. Soc. 1957, 79, 5441–5444. [Google Scholar] [CrossRef]
- Li, C.; Shi, G.Q. Polythiophene-Based Optical Sensors for Small Molecules. ACS Appl. Mater. Interfaces 2013, 5, 4503–4510. [Google Scholar] [CrossRef]
- Tang, J.; Ou, J.; Zhu, C.; Yao, C.; Yang, D. Flash Synthesis of DNA Hydrogel via Supramacromolecular Assembly of DNA Chains and Upconversion Nanoparticles for Cell Engineering. Adv. Funct. Mater. 2021, 32, 2107267. [Google Scholar] [CrossRef]
- Nelson, T.L.; Tran, I.; Ingallinera, T.G.; Maynor, M.S.; Lavigne, J.J. Multi-layered analyses using directed partitioning to identify and discriminate between biogenic amines. Analyst 2007, 132, 1024–1030. [Google Scholar] [CrossRef] [PubMed]
- Minamiki, T.; Kurita, R. Potentiometric detection of biogenic amines utilizing affinity on a 4-mercaptobenzoic acid monolayer. Anal. Methods 2019, 11, 1155–1158. [Google Scholar] [CrossRef]
- Minami, T.; Esipenko, N.A.; Akdeniz, A.; Zhang, B.; Isaacs, L.; Anzenbacher, P., Jr. Multianalyte Sensing of Addictive Over-the-Counter (OTC) Drugs. J. Am. Chem. Soc. 2013, 135, 15238–15243. [Google Scholar] [CrossRef] [PubMed]
- Neitzel, A.E.; de Hoe, G.X.; Tirrell, M.V. Expanding the structural diversity of polyelectrolyte complexes and polyzwitterions. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100897. [Google Scholar] [CrossRef]
- Minamiki, T.; Hashima, Y.; Sasaki, Y.; Minami, T. An electrolyte-gated polythiophene transistor for the detection of biogenic amines in water. Chem. Commun. 2018, 54, 6907–6910. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Moreno, N.J.; Medrano, F.; Yatsimirsky, A.K. Schiff base formation and recognition of amino sugars, aminoglycosides and biological polyamines by 2-formyl phenylboronic acid in aqueous solution. Org. Biomol. Chem. 2012, 10, 6960–6972. [Google Scholar] [CrossRef] [PubMed]
- Köstereli, Z.; Scopelliti, R.; Severin, K. Pattern-based sensing of aminoglycosides with fluorescent amphiphiles. Chem. Sci. 2014, 5, 2456–2460. [Google Scholar] [CrossRef]
- Cheng, D.D.; Li, Y.D.; Wang, J.; Sun, Y.J.; Jin, L.; Li, C.X.; Lu, Y. Fluorescence and colorimetric detection of ATP based on a strategy of self-promoting aggregation of a water-soluble polythiophene derivative. Chem. Commun. 2015, 51, 8544–8546. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, Z.; Xing, H.; Sui, X.; Yang, J.; Wang, Y. Quantitative and qualitative analyses of metal ions in food and water by using a multicolor sensor array and chemometrics. Anal. Methods 2023, 15, 906–915. [Google Scholar] [CrossRef]
- Kumar, A.; Castro, M.; Feller, J.-F. Review on Sensor Array-Based Analytical Technologies for Quality Control of Food and Beverages. Sensors 2023, 23, 4017. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, N.; Bai, W.; Bao, Y. Fluorescent chemosensors based on conjugated polymers with N-heterocyclic moieties: Two decades of progress. Polym. Chem. 2020, 11, 3095–3114. [Google Scholar] [CrossRef]
- Piest, M.; Zhang, X.; Trinidad, J.; Engbersen, J.F.J. pH-responsive, dynamically restructuring hydrogels formed by reversible crosslinking of PVA with phenylboronic acid functionalised PPO–PEO–PPO spacers (Jeffamines®). Soft Matter 2011, 7, 11111. [Google Scholar] [CrossRef]
- Na, J.Y.; Kang, B.; Sin, D.H.; Cho, K.; Park, Y.D. Understanding Solidification of Polythiophene Thin Films during Spin-Coating: Effects of Spin-Coating Time and Processing Additives. Sci. Rep. 2015, 5, 13288. [Google Scholar] [CrossRef] [PubMed]
- Lodi, A.; Caselli, M.; Zanfrognini, B.; Cagnoli, R.; Mucci, A.; Parenti, F.; Schenetti, L.; Ponterini, G. Strategies to reduce inter-chain aggregation and fluorescence quenching in alternated multilayers of a polythiophene. Thin Solid Films 2008, 516, 8731. [Google Scholar] [CrossRef]
- Hayashi, S. Highly crystalline and efficient red-emissive π-conjugated polymer film: Tuning of macrostructure for light-emitting properties. Mater. Adv. 2020, 1, 632. [Google Scholar] [CrossRef]
- Kubo, Y.; Ishida, T.; Minami, T.; James, T.D. Highly Selective Fluoride Ion Detection Based on a Fluorescent Alizarin–o-Aminomethylphenylboronic Acid Ensemble in Aqueous MeOH Solution. Chem. Lett. 2006, 35, 996. [Google Scholar] [CrossRef]
- Abiman, P.; Wildgoose, G.G.; Crossley, A.; Jones, J.H.; Compton, R.G. Contrasting pKa of Protonated Bis(3-aminopropyl)-Terminated Polyethylene Glycol “Jeffamine” and the Associated Thermodynamic Parameters in Solution and Covalently Attached to Graphite Surfaces. Chem. Eur. J. 2007, 13, 9663. [Google Scholar] [CrossRef] [PubMed]
- Cappi, G.; Spiga, F.M.; Moncada, Y.; Ferretti, A.; Beyeler, M.; Bianchessi, M.; Decosterd, L.; Buclin, T.; Guiducci, C. Label-free detection of tobramycin in serum by transmission-localized surface plasmon resonance. Anal. Chem. 2015, 87, 5278. [Google Scholar] [CrossRef]
- González-Fernández, E.; de-los-Santos-Álvarez, N.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. Impedimetric aptasensor for tobramycin detection in human serum. Biosens. Bioelectron. 2011, 26, 2354. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minamiki, T.; Esaka, R.; Kurita, R. Displacement Assay in a Polythiophene Sensor System Based on Supramacromolecuar Disassembly-Caused Emission Quenching. Sensors 2024, 24, 4245. https://doi.org/10.3390/s24134245
Minamiki T, Esaka R, Kurita R. Displacement Assay in a Polythiophene Sensor System Based on Supramacromolecuar Disassembly-Caused Emission Quenching. Sensors. 2024; 24(13):4245. https://doi.org/10.3390/s24134245
Chicago/Turabian StyleMinamiki, Tsukuru, Ryosuke Esaka, and Ryoji Kurita. 2024. "Displacement Assay in a Polythiophene Sensor System Based on Supramacromolecuar Disassembly-Caused Emission Quenching" Sensors 24, no. 13: 4245. https://doi.org/10.3390/s24134245
APA StyleMinamiki, T., Esaka, R., & Kurita, R. (2024). Displacement Assay in a Polythiophene Sensor System Based on Supramacromolecuar Disassembly-Caused Emission Quenching. Sensors, 24(13), 4245. https://doi.org/10.3390/s24134245