A Retinal Vessel Segmentation Method Based on the Sharpness-Aware Minimization Model
Abstract
:1. Introduction
- We propose an optimization algorithm that uses sharpness-aware minimization in the domain of medical image segmentation (MIS), specifically focusing on retinal-vessel segmentation.
- Comprehensive experiments are performed on the DRIVE dataset. The experimental results demonstrate that our proposed method produces better results on the validation data than the training data, which means our model generalizes better and, hence, has no overfitting.
- We integrate SAM into the RF-UNet architecture, which is a novel deep learning model for vessel segmentation, and the results are improved generalization of RF-UNet.
2. Methodology
Algorithm 1: SAM-Enhanced RF-UNet Training Process |
3. Results
3.1. Dataset
3.2. Metrics and Evaluation
3.3. Experimental Setup
3.4. Experimental Results with SAM
3.5. Comparison to the Model Trained without SAM
3.6. Impact of Sharpness-Aware Minimization on Generalization
4. Discussion
- Testing our SAM-enhanced model on other diverse retinal image datasets such as CHUAC, STARE, and DCA1.
- Combining SAM with other cutting-edge methods like transfer learning and data augmentation to optimize model performance. Further research into the synergistic effects of these techniques may produce even more improved generalization.
- Extending the application of SAM to other medical imaging tasks such as MRI and CT scan analysis could show off its adaptability to and efficiency in a variety of contexts.
- Conducting a systematic investigation on how various hyperparameters may affect SAM’s performance in order to better optimize the training procedure for some tasks.
- Evaluating the SAM-trained model in real-world clinical settings.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
- The following abbreviations are used in this manuscript:
SAM | sharpness-aware minimization |
Acc | accuracy |
F1 | F1 score |
Sen | sensitivity |
Spe | specificity |
Appendix A
References
- Li, K.; Qi, X.; Luo, Y.; Yao, Z.; Zhou, X.; Sun, M. Accurate retinal vessel segmentation in color fundus images via fully attention-based networks. IEEE J. Biomed. Health Inform. 2020, 25, 2071–2081. [Google Scholar] [CrossRef] [PubMed]
- Mrugacz, M.; Bryl, A.; Zorena, K. Retinal vascular endothelial cell dysfunction and neuroretinal degeneration in diabetic patients. J. Clin. Med. 2021, 10, 458. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jiang, Y.; Li, M.; Yin, S. Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Trans. Ind. Inform. 2020, 17, 1958–1967. [Google Scholar] [CrossRef]
- Rim, T.H.; Teo, A.W.J.; Yang, H.H.S.; Cheung, C.Y.; Wong, T.Y. Retinal vascular signs and cerebrovascular diseases. J. Neuro-Ophthalmol. 2020, 40, 44–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lo, A.C. Diabetic retinopathy: Pathophysiology and treatments. Int. J. Mol. Sci. 2018, 19, 1816. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chuah, J.H.; Ali, R.; Wang, Y. Retinal vessel segmentation using deep learning: A review. IEEE Access 2021, 9, 111985–112004. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Leng, T.; Ting, D.S.; Rhee, K.; Horton, M.B.; Brady, C.J.; Chiang, M.F. Automated and computer-assisted detection, classification, and diagnosis of diabetic retinopathy. Telemed. E-Health 2020, 26, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Aujih, A.B.; Izhar, L.I.; Mériaudeau, F.; Shapiai, M.I. Analysis of Retinal Vessel Segmentation with Deep Learning and Its Effect on Diabetic Retinopathy Classification. In Proceedings of the 2018 International Conference on Intelligent and Advanced System (ICIAS), Kuala Lumpur, Malaysia, 13–14 August 2018. [Google Scholar]
- Mookiah, M.R.K.; Hogg, S.; MacGillivray, T.J.; Prathiba, V.; Pradeepa, R.; Mohan, V.; Anjana, R.M.; Doney, A.S.; Palmer, C.N.; Trucco, E. A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Med. Image Anal. 2021, 68, 101905. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wagner, S.K.; Chia, M.A.; Zhao, A.; Xu, M.; Struyven, R.; Alexander, D.C.; Keane, P.A. AutoMorph: Automated retinal vascular morphology quantification via a deep learning pipeline. Transl. Vis. Sci. Technol. 2022, 11, 12. [Google Scholar] [CrossRef]
- Shi, D.; Lin, Z.; Wang, W.; Tan, Z.; Shang, X.; Zhang, X.; Meng, W.; Ge, Z.; He, M. A deep learning system for fully automated retinal vessel measurement in high throughput image analysis. Front. Cardiovasc. Med. 2022, 9, 823436. [Google Scholar] [CrossRef]
- Zekavat, S.M.; Raghu, V.K.; Trinder, M.; Ye, Y.; Koyama, S.; Honigberg, M.C.; Yu, Z.; Pampana, A.; Urbut, S.; Haidermota, S.; et al. Deep learning of the retina enables phenome-and genome-wide analyses of the microvasculature. Circulation 2022, 145, 134–150. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.Y.; Xu, D.; Cheng, C.Y.; Sabanayagam, C.; Tham, Y.C.; Yu, M.; Rim, T.H.; Chai, C.Y.; Gopinath, B.; Mitchell, P.; et al. A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre. Nat. Biomed. Eng. 2021, 5, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Knudtson, M.D.; Klein, R.; Klein, B.E.; Meuer, S.M.; Hubbard, L.D. Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: Methodology, correlation between eyes, and effect of refractive errors. Ophthalmology 2004, 111, 1183–1190. [Google Scholar] [CrossRef]
- Cheung, C.Y.L.; Hsu, W.; Lee, M.L.; Wang, J.J.; Mitchell, P.; Lau, Q.P.; Hamzah, H.; Ho, M.; Wong, T.Y. A new method to measure peripheral retinal vascular caliber over an extended area. Microcirculation 2010, 17, 495–503. [Google Scholar] [PubMed]
- Perez-Rovira, A.; MacGillivray, T.; Trucco, E.; Chin, K.; Zutis, K.; Lupascu, C.; Tegolo, D.; Giachetti, A.; Wilson, P.J.; Doney, A.; et al. VAMPIRE: Vessel assessment and measurement platform for images of the REtina. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 3391–3394. [Google Scholar]
- Fraz, M.M.; Welikala, R.; Rudnicka, A.R.; Owen, C.G.; Strachan, D.; Barman, S.A. QUARTZ: Quantitative Analysis of Retinal Vessel Topology and size—An automated system for quantification of retinal vessels morphology. Expert Syst. Appl. 2015, 42, 7221–7234. [Google Scholar] [CrossRef]
- AlBadawi, S.; Fraz, M. Arterioles and venules classification in retinal images using fully convolutional deep neural network. In Proceedings of the Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, 27–29 June 2018; Proceedings 15. Springer: Cham, Switzerland, 2018; pp. 659–668. [Google Scholar]
- Jin, Q.; Meng, Z.; Pham, T.D.; Chen, Q.; Wei, L.; Su, R. DUNet: A deformable network for retinal vessel segmentation. Knowl.-Based Syst. 2019, 178, 149–162. [Google Scholar] [CrossRef]
- Nayebifar, B.; Moghaddam, H.A. A novel method for retinal vessel tracking using particle filters. Comput. Biol. Med. 2013, 43, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Hassan, G.; El-Bendary, N.; Hassanien, A.E.; Fahmy, A.; Snasel, V. Retinal blood vessel segmentation approach based on mathematical morphology. Procedia Comput. Sci. 2015, 65, 612–622. [Google Scholar] [CrossRef]
- Ma, K.; Xue, X.; Mariam, I. An effective segmentation method for retinal blood vessel image. In Proceedings of the Fifteenth International Conference on Graphics and Image Processing (ICGIP 2023), Nanjing, China, 8–10 November 2024; Volume 13089, pp. 92–99. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Li, W.; Yang, H.; Tian, T.; Cao, Z.; Pan, X.; Xu, W.; Yang, J.; Gao, F. Full-Resolution network and Dual-Threshold iteration for retinal vessel and coronary angiograph segmentation. IEEE J. Biomed. Health Inform. 2022, 26, 4623–4634. [Google Scholar] [CrossRef]
- Li, Q.; Feng, B.; Xie, L.; Liang, P.; Zhang, H.; Wang, T. A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 2015, 35, 109–118. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Zhang, Y.; He, M.; Chen, Z.; Hu, K.; Li, X.; Gao, X. Bridge-Net: Context-involved U-net with patch-based loss weight mapping for retinal blood vessel segmentation. Expert Syst. Appl. 2022, 195, 116526. [Google Scholar] [CrossRef]
- Jalali, Y.; Fateh, M.; Rezvani, M. VGA-Net: Vessel graph based attentional U-Net for retinal vessel segmentation. IET Image Process. 2024. [Google Scholar] [CrossRef]
- Su, H.; Gao, L.; Wang, Z.; Yu, Y.; Hong, J.; Gao, Y. A Hierarchical Full-Resolution Fusion Network and Topology-aware Connectivity Booster for Retinal Vessel Segmentation. IEEE Trans. Instrum. Meas. 2024. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Yi, Z. A Multi-Scale Attention Fusion Network for Retinal Vessel Segmentation. Appl. Sci. 2024, 14, 2955. [Google Scholar] [CrossRef]
- Kong, L.; Wu, Y. RVS-FDSC: A retinal vessel segmentation method with four-directional strip convolution to enhance feature extraction. Biomed. Signal Process. Control 2024, 95, 106296. [Google Scholar] [CrossRef]
- Jiang, Y.; Neyshabur, B.; Mobahi, H.; Krishnan, D.; Bengio, S. Fantastic generalization measures and where to find them. arXiv 2019, arXiv:1912.02178. [Google Scholar]
- Andriushchenko, M.; Flammarion, N. Towards understanding Sharpness-Aware minimization. arXiv 2022, arXiv:2206.06232. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. [Google Scholar]
- Mueller, M.; Vlaar, T.; Rolnick, D.; Hein, M. Normalization layers are all that sharpness-aware minimization needs. Adv. Neural Inf. Process. Syst. 2024, 36. [Google Scholar]
- Behdin, K.; Mazumder, R. Sharpness-aware minimization: An implicit regularization perspective. Stat 2023, 1050, 23. [Google Scholar]
- Chen, Z.; Zhang, J.; Kou, Y.; Chen, X.; Hsieh, C.J.; Gu, Q. Why Does Sharpness-Aware Minimization Generalize Better Than SGD? Adv. Neural Inf. Process. Syst. 2024, 36. [Google Scholar]
- Zhu, M.; Wei, S.; Shen, L.; Fan, Y.; Wu, B. Enhancing fine-tuning based backdoor defense with sharpness-aware minimization. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 4466–4477. [Google Scholar]
- Zhou, Z.; Li, L.; Zhao, P.; Heng, P.A.; Gong, W. Class-conditional sharpness-aware minimization for deep long-tailed recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 3499–3509. [Google Scholar]
- Wei, Z.; Zhu, J.; Zhang, Y. Sharpness-aware minimization alone can improve adversarial robustness. In Proceedings of the Second Workshop on New Frontiers in Adversarial Machine Learning, Honolulu, HI, USA, 24 July 2023. [Google Scholar]
- Foret, P.; Kleiner, A.; Mobahi, H.; Neyshabur, B. Sharpness-Aware Minimization for Efficiently Improving Generalization. arXiv 2020, arXiv:2010.01412v3. [Google Scholar]
- Staal, J.; Abràmoff, M.D.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [Google Scholar] [CrossRef] [PubMed]
Metric | Value |
---|---|
Loss | 0.094225 |
Acc | 0.96225 |
Auc | 0.97987 |
F1 | 0.79926 |
Sen | 0.76249 |
Spe | 0.98437 |
Metric | with SAM | without SAM | Improvement |
---|---|---|---|
Loss | 0.09487 | 0.45709 | +79.39% |
Acc | 0.96225 | 0.90169 | +6.71% |
Auc | 0.97987 | 0.85756 | +14.28% |
F1 | 0.79926 | 0.55216 | +44.82% |
Sen | 0.76249 | 0.56381 | +35.26% |
Spe | 0.98437 | 0.93909 | +4.82% |
Metric | with SAM | without SAM | Improvement |
---|---|---|---|
Loss | 0.08053 | 0.40266 | +80.00% |
Acc | 0.96821 | 0.93999 | +3.00% |
Auc | 0.98388 | 0.89083 | +10.38% |
F1 | 0.79322 | 0.58144 | +36.43% |
Sen | 0.79861 | 0.53305 | +49.84% |
Spe | 0.98265 | 0.97620 | +0.66% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariam, I.; Xue, X.; Gadson, K. A Retinal Vessel Segmentation Method Based on the Sharpness-Aware Minimization Model. Sensors 2024, 24, 4267. https://doi.org/10.3390/s24134267
Mariam I, Xue X, Gadson K. A Retinal Vessel Segmentation Method Based on the Sharpness-Aware Minimization Model. Sensors. 2024; 24(13):4267. https://doi.org/10.3390/s24134267
Chicago/Turabian StyleMariam, Iqra, Xiaorong Xue, and Kaleb Gadson. 2024. "A Retinal Vessel Segmentation Method Based on the Sharpness-Aware Minimization Model" Sensors 24, no. 13: 4267. https://doi.org/10.3390/s24134267
APA StyleMariam, I., Xue, X., & Gadson, K. (2024). A Retinal Vessel Segmentation Method Based on the Sharpness-Aware Minimization Model. Sensors, 24(13), 4267. https://doi.org/10.3390/s24134267