Ship Detection in Synthetic Aperture Radar Images under Complex Geographical Environments, Based on Deep Learning and Morphological Networks
Abstract
:1. Introduction
- Development of an Advanced Preprocessing Module: Combining morphological algorithms with neural networks enhances the algorithm’s generalization performance while retaining the benefits of morphological processing. By investigating the strengths and weaknesses of different morphological processing algorithms, advantageous methods are integrated into a morphological preprocessing module. This module effectively reduces noise, extracts edges, and enhances ship detail features, ensuring more effective and reliable analysis by subsequent deep learning models. The enhanced images, along with the original images, are input into the feature extraction network to maintain a comprehensive data perspective.
- Integration of the Coordinate Channel Attention (CCA) Module: In the core architecture of the detection network, a Coordinate Channel Attention (CCA) module has been implemented. This module merges the benefits of both coordinate and channel attention, simultaneously applying attention across the image’s horizontal and vertical coordinates as well as its channels. This enhancement significantly boosts the network’s sensitivity to the positioning and pertinent features of ships, thereby improving its recognition and localization capabilities. Such advancements are essential for sustaining detection accuracy in the dynamic and varied conditions of maritime environments, effectively minimizing the incidence of missed detections.
- Establishment of a Four-layer Bidirectional Feature Pyramid Network (FBFPN): FBFPN builds on the foundation of PAFPN by incorporating larger feature maps, creating a four-level feature pyramid structure specifically designed to capture detailed characteristics of ships across various scales. Furthermore, to minimize noise interference in these large-sized feature maps, features are prevented from propagating upwards. This pyramid structure enhances the precision of feature extraction, enabling the network to identify ships with increased accuracy and improved robustness against complex background noise and environmental disturbances.
2. Methodology
2.1. Architecture of the Morphological Network
2.1.1. Fundamental Morphological Operations
2.1.2. Morphological Preprocessing Module
2.2. Coordinate Channel Attention Module
2.3. Four-Layer Bidirectional Feature Pyramid Network
3. Experiment and Analysis
3.1. Dataset
3.2. Evaluation Metric
3.3. Experiment Settings
3.4. Ablation Study
3.4.1. Experimental Analysis of Morphologic Processing Module Ablation
3.4.2. The Ablation Experiments of Different Modules
3.5. Comparison with the State-of-the-Art Methods
3.5.1. Compared with the Classical Target Detection Algorithm
3.5.2. Compared with Other Improved SAR Ship Detection Algorithms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goetz, A.F.H.; Rock, B.N.; Rowan, L.C. Remote-Sensing for Exploration—An Overview. Econ. Geol. 1983, 78, 573–590. [Google Scholar] [CrossRef]
- Brusch, S.; Lehner, S.; Fritz, T.; Soccorsi, M.; Soloviev, A.; van Schie, B. Ship Surveillance with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1092–1103. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Zhang, T.; Yang, Z.; Shi, J.; Zhan, X. Shadow-Background-Noise 3D Spatial Decomposition Using Sparse Low-Rank Gaussian Properties for Video-SAR Moving Target Shadow Enhancement. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4516105. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Shao, Z.; Shi, J.; Wei, S.; Zhang, T.; Zeng, T. A Group-Wise Feature Enhancement-and-Fusion Network with Dual-Polarization Feature Enrichment for SAR Ship Detection. Remote Sens. 2022, 14, 5276. [Google Scholar] [CrossRef]
- Wei, X.; Wang, X.; Chong, J. Local region power spectrum-based unfocused ship detection method in synthetic aperture radar images. J. Appl. Remote Sens. 2018, 12, 016026. [Google Scholar] [CrossRef]
- Eldhuset, K. An automatic ship and ship wake detection system for spaceborne SAR images in coastal regions. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1010–1019. [Google Scholar] [CrossRef]
- Tello, M.; López-Martínez, C.; Mallorqui, J.J. A novel algorithm for ship detection in SAR imagery based on the wavelet transform. IEEE Geosci. Remote Sens. Lett. 2005, 2, 201–205. [Google Scholar] [CrossRef]
- Qin, X.X.; Zhou, S.L.; Zou, H.X.; Gao, G. A CFAR Detection Algorithm for Generalized Gamma Distributed Background in High-Resolution SAR Images. IEEE Geosci. Remote Sens. Lett. 2013, 10, 806–810. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A.; IEEE. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the 14th European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.M.; Dollár, P.; IEEE. Focal Loss for Dense Object Detection. In Proceedings of the 16th IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J.; IEEE. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Hu, Q.; Hu, S.H.; Liu, S.Q. BANet: A Balance Attention Network for Anchor-Free Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5222212. [Google Scholar] [CrossRef]
- Li, D.; Liang, Q.H.; Liu, H.Q.; Liu, Q.H.; Liu, H.J.; Liao, G.S. A Novel Multidimensional Domain Deep Learning Network for SAR Ship Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5203213. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Zhang, T. Lite-YOLOv5: A Lightweight Deep Learning Detector for On-Board Ship Detection in Large-Scene Sentinel-1 SAR Images. Remote Sens. 2022, 14, 1018. [Google Scholar] [CrossRef]
- Qin, R.; Fu, X.J.; Chang, J.Y.; Lang, P. Multilevel Wavelet-SRNet for SAR Target Recognition. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4009005. [Google Scholar] [CrossRef]
- Jiang, J.H.; Fu, X.J.; Qin, R.; Wang, X.Y.; Ma, Z.F. High-Speed Lightweight Ship Detection Algorithm Based on YOLO-V4 for Three-Channels RGB SAR Image. Remote Sens. 2021, 13, 1909. [Google Scholar] [CrossRef]
- Ai, J.; Tian, R.; Luo, Q.; Jin, J.; Tang, B. Multi-Scale Rotation-Invariant Haar-Like Feature Integrated CNN-Based Ship Detection Algorithm of Multiple-Target Environment in SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10070–10087. [Google Scholar] [CrossRef]
- Mondal, R.; Purkait, P.; Santra, S.; Chanda, B. Morphological Networks for Image De-raining. In Proceedings of the 21st IAPR International Conference on Discrete Geometry for Computer Imagery (DGCI), ESIEE Paris, Marne la Vallee, France, 26–28 March 2019; pp. 262–275. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.F.; Shi, J.P.; Jia, J.Y.; IEEE. Path Aggregation Network for Instance Segmentation. In Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
- Zhang, T.W.; Zhang, X.L.; Li, J.W.; Xu, X.W.; Wang, B.Y.; Zhan, X.; Xu, Y.Q.; Ke, X.; Zeng, T.J.; Su, H.; et al. SAR Ship Detection Dataset (SSDD): Official Release and Comprehensive Data Analysis. Remote Sens. 2021, 13, 3690. [Google Scholar] [CrossRef]
- Wei, S.J.; Zeng, X.F.; Qu, Q.Z.; Wang, M.; Su, H.; Shi, J. HRSID: A High-Resolution SAR Images Dataset for Ship Detection and Instance Segmentation. IEEE Access 2020, 8, 120234–120254. [Google Scholar] [CrossRef]
- Cai, Z.W.; Vasconcelos, N.; IEEE. Cascade R-CNN: Delving into High Quality Object Detection. In Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162. [Google Scholar]
- Pang, J.M.; Chen, K.; Shi, J.P.; Feng, H.J.; Ouyang, W.L.; Lin, D.H.; Soc, I.C. Libra R-CNN: Towards Balanced Learning for Object Detection. In Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 821–830. [Google Scholar]
- Tian, Z.; Shen, C.H.; Chen, H.; He, T.; IEEE. FCOS: Fully Convolutional One-Stage Object Detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9626–9635. [Google Scholar]
- Duan, K.W.; Bai, S.; Xie, L.X.; Qi, H.G.; Huang, Q.M.; Tian, Q.; IEEE. CenterNet: Keypoint Triplets for Object Detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6568–6577. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M.; IEEE. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Kong, T.; Sun, F.C.; Liu, H.P.; Jiang, Y.N.; Li, L.; Shi, J.B. FoveaBox: Beyound Anchor-Based Object Detection. IEEE Trans. Image Process. 2020, 29, 7389–7398. [Google Scholar] [CrossRef]
- Fu, J.M.; Sun, X.; Wang, Z.R.; Fu, K. An Anchor-Free Method Based on Feature Balancing and Refinement Network for Multiscale Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1331–1344. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, J.; Huang, Z.X.; Wan, H.Y.; Xia, R.F.; Wu, B.C.; Sun, L.; Xing, M.D. A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship Detection. Remote Sens. 2022, 14, 1908. [Google Scholar] [CrossRef]
- Bai, L.; Yao, C.; Ye, Z.; Xue, D.L.; Lin, X.Y.; Hui, M. A Novel Anchor-Free Detector Using Global Context-Guide Feature Balance Pyramid and United Attention for SAR Ship Detection. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4003005. [Google Scholar] [CrossRef]
Erosion | Dilation | Opening | Closing | Top-Hat | Black-Hat | Morphological Gradient | Precision (%) | Recall (%) | F1 (%) | mAP (%) |
---|---|---|---|---|---|---|---|---|---|---|
95.34 | 93.77 | 94.55 | 97.64 | |||||||
✓ | 95.94 | 95.24 | 95.59 | 98.24 | ||||||
✓ | 95.05 | 95.05 | 95.05 | 97.67 | ||||||
✓ | 96.85 | 95.60 | 96.22 | 98.27 | ||||||
✓ | 95.18 | 93.96 | 94.56 | 97.25 | ||||||
✓ | 95.80 | 95.97 | 95.88 | 98.13 | ||||||
✓ | 95.26 | 95.60 | 95.43 | 98.24 | ||||||
✓ | 96.32 | 95.97 | 96.15 | 98.26 | ||||||
✓ | ✓ | 96.27 | 94.51 | 95.38 | 98.07 | |||||
✓ | ✓ | 95.22 | 94.87 | 95.05 | 97.45 | |||||
✓ | ✓ | 96.11 | 95.05 | 95.58 | 98.24 | |||||
✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 95.10 | 95.97 | 95.53 | 98.05 |
✓ | ✓ | ✓ | ✓ | ✓ | 96.46 | 94.69 | 95.56 | 98.34 |
Morphological | CCA | FBFPN | mAP (%) | F1 (%) | Recall (%) | Precision (%) | APs (%) | APm (%) | APl (%) |
---|---|---|---|---|---|---|---|---|---|
97.64 | 94.55 | 93.77 | 95.34 | 54.4 | 67.0 | 63.5 | |||
✓ | 98.34 | 95.56 | 94.69 | 96.46 | 55.6 | 66.7 | 67.7 | ||
✓ | 97.77 | 96.20 | 95.05 | 97.37 | 54.2 | 67.9 | 67.9 | ||
✓ | 98.05 | 96.41 | 95.79 | 97.03 | 55.1 | 67.5 | 65.0 | ||
✓ | ✓ | ✓ | 98.47 | 95.88 | 95.97 | 95.80 | 54.0 | 68.0 | 64.4 |
Method | Dataset | Precision (%) | Recall (%) | F1 (%) | mAP (%) | Parameters (M) | FLOPs (G) |
---|---|---|---|---|---|---|---|
Cascade RCNN [24] | SSDD | 94.07 | 93.04 | 94 | 94.07 | 87.9 | 110.5 |
Libra R-CNN [25] | SSDD | 90.49 | 90.60 | 91 | 92.83 | 60.4 | 83.0 |
FCOS [26] | SSDD | 94.98 | 90.11 | 92 | 93.71 | 50.8 | 69.8 |
CenterNet [27] | SSDD | 94.82 | 93.96 | 94 | 93.55 | 20.2 | 25.9 |
YOLOX-s [28] | SSDD | 96.57 | 92.86 | 95 | 97.77 | 8.94 | 17.1 |
YOLOv7 [29] | SSDD | 96.91 | 91.94 | 94 | 97.99 | 37.2 | 33.6 |
ours | SSDD | 95.80 | 95.97 | 96 | 98.47 | 9.86 | 38.21 |
Cascade RCNN [24] | HRSID | 86.96 | 85.53 | 86 | 84.79 | 87.9 | 209.7 |
Libra R-CNN [25] | HRSID | 81.14 | 86.24 | 84 | 86.67 | 60.4 | 182.6 |
FCOS [26] | HRSID | 88.66 | 82.05 | 85 | 86.68 | 50.8 | 170.6 |
CenterNet [27] | HRSID | 87.22 | 87.53 | 87 | 88.09 | 20.2 | 63.3 |
YOLOX-s [28] | HRSID | 92.41 | 84.62 | 89 | 91.25 | 8.94 | 41.81 |
YOLOv7 [29] | HRSID | 90.10 | 84.47 | 87 | 91.29 | 37.2 | 82.1 |
ours | HRSID | 92.67 | 84.84 | 89 | 91.71 | 9.86 | 93.3 |
Method | Dataset | AP50 (%) | Parameters (M) | FLOPs (G) | FPS (img/s) |
---|---|---|---|---|---|
FoveaBox [30] | SSDD | 91.2 | 36.01 | 73.12 | 42.9 |
FBR-Net [31] | SSDD | 94.1 | 32.5 | - | 24.9 |
HRSDNet [23] | SSDD | 93.9 | - | - | 9.9 |
FBUA-Net [33] | SSDD | 96.2 | 36.54 | 71.11 | 31.8 |
ours | SSDD | 97.5 | 9.86 | 38.21 | 14.3 |
FoveaBox [30] | HRSID | 85.9 | 36.01 | 199.43 | 20.5 |
LPEDet [32] | HRSID | 89.7 | 5.68 | 18.38 | 24.9 |
HRSDNet [23] | HRSID | 88.4 | - | - | 7.9 |
FBUA-Net [33] | HRSID | 90.3 | 36.54 | 194.12 | 12.2 |
ours | HRSID | 90.0 | 9.86 | 93.27 | 11.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, S.; Zhao, C.; Dong, J.; Fu, X. Ship Detection in Synthetic Aperture Radar Images under Complex Geographical Environments, Based on Deep Learning and Morphological Networks. Sensors 2024, 24, 4290. https://doi.org/10.3390/s24134290
Cao S, Zhao C, Dong J, Fu X. Ship Detection in Synthetic Aperture Radar Images under Complex Geographical Environments, Based on Deep Learning and Morphological Networks. Sensors. 2024; 24(13):4290. https://doi.org/10.3390/s24134290
Chicago/Turabian StyleCao, Shen, Congxia Zhao, Jian Dong, and Xiongjun Fu. 2024. "Ship Detection in Synthetic Aperture Radar Images under Complex Geographical Environments, Based on Deep Learning and Morphological Networks" Sensors 24, no. 13: 4290. https://doi.org/10.3390/s24134290
APA StyleCao, S., Zhao, C., Dong, J., & Fu, X. (2024). Ship Detection in Synthetic Aperture Radar Images under Complex Geographical Environments, Based on Deep Learning and Morphological Networks. Sensors, 24(13), 4290. https://doi.org/10.3390/s24134290