A Novel Method for Identifying Frailty and Quantifying Muscle Strength Using the Six-Minute Walking Test
Abstract
:1. Introduction
- (1)
- A measurement and analysis system for the 6MWT using wearable accelerometers was developed.
- (2)
- A method for discrimination of the frailty and visualization of lower limb muscle weakness based on the gait parameters of SL and SC was provided.
- (3)
- We proposed the concept of a WMS scale as a multivariate function of SL, SC, and six-minute walking energy expenditure (6MWEE) for scoring the walking muscle strength.
2. Materials and Methods
2.1. Participants
2.2. J-CHS for Frailty Assessment
2.3. Gait Measurement System (GMS)
2.4. Six-Minute Walking Test (6MWT)
2.5. Preprocessing and Gait Parameters
2.5.1. Data Preprocessing
2.5.2. Calculation of Gait Parameters
- 1.
- Stride Length (SL)
- 2.
- Step Cadence (SC)
- 3.
- Gait Velocity (GV)
- 4.
- Six-Minute Walking Distance (6MWD)
- 5.
- Six-Minute Walking Energy Expenditure (6MWEE)
2.6. Statistical Analysis
3. Results
3.1. J-CHS Criteria and Gait Parameters
3.2. SC and SL Distribution Map
3.3. Concept of Walking Muscle Strength (WMS)
4. Discussion
4.1. Correlation between the J-CHS and Gait Parameters
4.2. SC and SL Distribution Map for Estimation and Visualization of Frailty
4.3. Scoring the Walking Muscle Strength
4.4. Advantages and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Symbol | Description |
---|---|
SL | Stride length |
SC | Step cadence |
J-CHS | Japanese version of Cardiovascular Health Study |
TUG | Timed up and go |
6MWT | Six-minute walking test |
ATS | American thoracic society |
6MWD | Six-minute walking distance |
WMS | Walking muscle strength |
6MWEE | Six-minute walking energy expenditure |
WL | Weight loss |
EX | Exhaustion |
PA | Physical activity |
HS | Handgrip strength |
SP | 5-m walking speed |
GMS | Gait measurement system |
IIR | Infinite impulse response |
SW | Straight walk |
UW | U-turn walk |
GV | 6MWT gait velocity |
FFT | Fast Fourier Transform |
BMR | Basal metabolic rate |
MET | Metabolic equivalent of task |
HBE | Harris–Benedict equation |
ROC | Receiver operating characteristic |
AUC | Area under the curve |
ASWG | Asian sarcopenia working group |
References
- Frontera, W.R.; Ochala, J. Skeletal Muscle: A Brief Review of Structure and Function. Calcif. Tissue Int. 2015, 96, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Nilwik, R.; Snijders, T.; Leenders, M.; Groen, B.B.L.; van Kranenburg, J.; Verdijk, L.B.; van Loon, L.J.C. The Decline in Skeletal Muscle Mass with Aging Is Mainly Attributed to a Reduction in Type II Muscle Fiber Size. Exp. Gerontol. 2013, 48, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Tieland, M.; Trouwborst, I.; Clark, B.C. Skeletal Muscle Performance and Ageing. J. Cachexia Sarcopenia Muscle 2018, 9, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Shao, T.; Verma, H.K.; Pande, B.; Costanzo, V.; Ye, W.; Cai, Y.; Bhaskar, L.V.K.S. Physical Activity and Nutritional Influence on Immune Function: An Important Strategy to Improve Immunity and Health Status. Front. Physiol. 2021, 12, 751374. [Google Scholar] [CrossRef] [PubMed]
- Agostini, D.; Gervasi, M.; Ferrini, F.; Bartolacci, A.; Stranieri, A.; Piccoli, G.; Barbieri, E.; Sestili, P.; Patti, A.; Stocchi, V.; et al. An Integrated Approach to Skeletal Muscle Health in Aging. Nutrients 2023, 15, 1802. [Google Scholar] [CrossRef] [PubMed]
- Reid, K.F.; Fielding, R.A. Skeletal Muscle Power: A Critical Determinant of Physical Functioning in Older Adults. Exerc. Sport Sci. Rev. 2012, 40, 4. [Google Scholar] [CrossRef] [PubMed]
- Auyeung, T.W.; Lee, S.W.J.; Leung, J.; Kwok, T.; Woo, J. Age-Associated Decline of Muscle Mass, Grip Strength and Gait Speed: A 4-Year Longitudinal Study of 3018 Community-Dwelling Older Chinese. Geriatr. Gerontol. Int. 2014, 14, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, I.; Tanimoto, Y.; Takahashi, Y.; Kusabiraki, T.; Tamaki, J. Correlation between Muscle Strength and Muscle Mass, and Their Association with Walking Speed, in Community-Dwelling Elderly Japanese Individuals. PLoS ONE 2014, 9, e111810. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.; Luger, E.; Kapan, A.; Titze, S.; Lackinger, C.; Schindler, K.E.; Dorner, T.E. Associations between Daily Physical Activity, Handgrip Strength, Muscle Mass, Physical Performance and Quality of Life in Prefrail and Frail Community-Dwelling Older Adults. Qual. Life Res. 2016, 25, 3129–3138. [Google Scholar] [CrossRef] [PubMed]
- Satake, S.; Arai, H. The Revised Japanese Version of the Cardiovascular Health Study Criteria (Revised J-CHS Criteria). Geriatr. Gerontol. Int. 2020, 20, 992–993. [Google Scholar] [CrossRef] [PubMed]
- Satake, S.; Arai, H. Frailty: Definition, Diagnosis, Epidemiology. Geriatr. Gerontol. Int. 2020, 20, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A-Biol. Sci. Med. Sci. 2001, 56, M146–M157. [Google Scholar] [CrossRef] [PubMed]
- Gobbens, R.J.J.; Van Assen, M.A.L.M. The Prediction of Quality of Life by Physical, Psychological and Social Components of Frailty in Community-Dwelling Older People. Qual. Life Res. 2014, 23, 2289–2300. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E. Frailty and Sarcopenia in Elderly. Wien. Klin. Wochen. 2016, 128, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Rolland, Y.; Dupuy, C.; van Kan, G.A.; Gillette, S.; Vellas, B. Treatment Strategies for Sarcopenia and Frailty. Med. Clin. N. Am. 2011, 95, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Cohen, A.A.; Xue, Q.-L.; Walston, J.; Bandeen-Roche, K.; Varadhan, R. The Physical Frailty Syndrome as a Transition from Homeostatic Symphony to Cacophony. Nat. Aging 2021, 1, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Angulo, J.; El Assar, M.; Álvarez-Bustos, A.; Rodríguez-Mañas, L. Physical Activity and Exercise: Strategies to Manage Frailty. Redox Biol. 2020, 35, 101513. [Google Scholar] [CrossRef] [PubMed]
- Racey, M.; Ali, M.U.; Sherifali, D.; Fitzpatrick-Lewis, D.; Lewis, R.; Jovkovic, M.; Bouchard, D.R.; Giguère, A.; Holroyd-Leduc, J.; Tang, A.; et al. Effectiveness of Physical Activity Interventions in Older Adults with Frailty or Prefrailty: A Systematic Review and Meta-Analysis. CMAJ Open 2021, 9, E728. [Google Scholar] [CrossRef]
- Toosizadeh, N.; Mohler, J.; Najafi, B. Assessing Upper Extremity Motion: An Innovative Method to Identify Frailty. J. Am. Geriatr. Soc. 2015, 63, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Bortone, I.; Sardone, R.; Lampignano, L.; Castellana, F.; Zupo, R.; Lozupone, M.; Moretti, B.; Giannelli, G.; Panza, F. How Gait Influences Frailty Models and Health-Related Outcomes in Clinical-Based and Population-Based Studies: A Systematic Review. J. Cachexia Sarcopenia Muscle 2021, 12, 274–297. [Google Scholar] [CrossRef] [PubMed]
- Greene, B.R.; Doheny, E.P.; O’Halloran, A.; Anne Kenny, R. Frailty Status Can Be Accurately Assessed Using Inertial Sensors and the TUG Test. Age Ageing 2014, 43, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.; Vale, A.F.; Silva, A.; Araújo, M.A.S.; de Paula Júnior, C.A.; de Lira, C.A.B.; Ramirez-Campillo, R.; Martins, W.; Gentil, P. Acute and Chronic Effects of Interval Training on the Immune System: A Systematic Review with Meta-Analysis. Biology 2021, 10, 868. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Park, S.-K.; Jee, Y.-S. Moderate- to Fast-Walking Improves Immunocytes through a Positive Change of Muscle Contractility in Old Women: A Pilot Study. J. Exerc. Rehabil. 2023, 19, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Ikezoe, T.; Nakamura, M.; Shima, H.; Asakawa, Y.; Ichihashi, N. Association between Walking Ability and Trunk and Lower-Limb Muscle Atrophy in Institutionalized Elderly Women: A Longitudinal Pilot Study. J. Physiol. Anthropol. 2015, 34, 31. [Google Scholar] [CrossRef] [PubMed]
- Stotz, A.; Hamacher, D.; Zech, A. Relationship between Muscle Strength and Gait Parameters in Healthy Older Women and Men. Int. J. Environ. Res. Public Health 2023, 20, 5362. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, I.; Lee, H.J.; Lee, O. The Reliability and Validity of Gait Speed with Different Walking Pace and Distances against General Health, Physical Function, and Chronic Disease in Aged Adults. J. Exerc. Nutr. Biochem. 2016, 20, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.P.; Lin, Y.-C.; Pandy, M.G. Effects of Step Length and Step Frequency on Lower-Limb Muscle Function in Human Gait. J. Biomech. 2017, 57, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Meijer, O.G.; Lin, J.; Bruijn, S.M.; Wu, W.; Lin, X.; Hu, H.; Huang, C.; Shi, L.; Van Dieën, J.H. The Effects of Stride Length and Stride Frequency on Trunk Coordination in Human Walking. Gait Posture 2010, 31, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Research on Speed Control Features of Japanese Women’s 1500 m Race. Available online: https://pdf.hanspub.org/APS20210400000_16612551.pdf (accessed on 10 May 2024).
- ATS. Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories ATS Statement: Guidelines for the Six-Minute Walk Test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef] [PubMed]
- The Actual Condition of the 6-Minutes Walk Test, and the Problems in the Medical Service under Health Insurance. Available online: https://mol.medicalonline.jp/library/journal/download?GoodsID=ai1lupvd/2013/002102/012&name=0172-0178j&UserID=133.62.137.105 (accessed on 10 May 2024).
- Kenry; Yeo, J.C.; Lim, C.T. Emerging Flexible and Wearable Physical Sensing Platforms for Healthcare and Biomedical Applications. Microsyst. Nanoeng. 2016, 2, 16043. [Google Scholar] [CrossRef]
- Bourke, A.K.; O’Donovan, K.; Clifford, A.; Olaighin, G.; Nelson, J. Optimum Gravity Vector and Vertical Acceleration Estimation Using a Tri-Axial Accelerometer for Falls and Normal Activities. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; IEEE: Boston, MA, USA, 2011; pp. 7896–7899. [Google Scholar]
- Ferrari, A.; Ginis, P.; Hardegger, M.; Casamassima, F.; Rocchi, L.; Chiari, L. A Mobile Kalman-Filter Based Solution for the Real-Time Estimation of Spatio-Temporal Gait Parameters. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Zarchan, P.; Musoff, H. Fundamentals of Kalman Filtering: A Practical Approach, 3rd ed.; AIAA: Reston, VA, USA, 2009; pp. 107–118. [Google Scholar]
- Hills, A.P.; Mokhtar, N.; Byrne, N.M. Assessment of Physical Activity and Energy Expenditure: An Overview of Objective Measures. Front. Nutr. 2014, 1, 5. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, C.; Tanaka, S.; Futami, J.; Oka, J.; Ishikawa-Takata, K.; Kashiwazaki, H. Activity Diary Method for Predicting Energy Expenditure as Evaluated by a Whole-Body Indirect Human Calorimeter. J. Nutr. Sci. Vitaminol. 2003, 49, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Brooks, A.G.; Gunn, S.M.; Withers, R.T.; Gore, C.J.; Plummer, J.L. Predicting Walking METs and Energy Expenditure from Speed or Accelerometry. Med. Sci. Sports Exerc. 2005, 37, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Jetté, M.; Sidney, K.; Blümchen, G. Metabolic Equivalents (METS) in Exercise Testing, Exercise Prescription, and Evaluation of Functional Capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.B.; Simonsick, E.M.; Naydeck, B.L.; Boudreau, R.M.; Kritchevsky, S.B.; Nevitt, M.C.; Pahor, M.; Satterfield, S.; Brach, J.S.; Studenski, S.A.; et al. Association of Long-Distance Corridor Walk Performance with Mortality, Cardiovascular Disease, Mobility Limitation, and Disability. JAMA 2006, 295, 2018–2026. [Google Scholar] [CrossRef] [PubMed]
- Batista, F.S.; Gomes, G.A.d.O.; Neri, A.L.; Guariento, M.E.; Cintra, F.A.; Sousa, M.d.L.R.d.; D’Elboux, M.J. Relationship between Lower-Limb Muscle Strength and Frailty among Elderly People. Sao Paulo Med. J. 2012, 130, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic Value of Grip Strength: Findings from the Prospective Urban Rural Epidemiology (PURE) Study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Chan, J.; Lu, Y.-C.; Yao, M.M.-S.; Kosik, R.O. Correlation between Hand Grip Strength and Regional Muscle Mass in Older Asian Adults: An Observational Study. BMC Geriatr. 2022, 22, 206. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Loenneke, J.P.; Jo, E.; Wilson, G.J.; Zourdos, M.C.; Kim, J.-S. The Effects of Endurance, Strength, and Power Training on Muscle Fiber Type Shifting. J. Strength Cond. Res. 2012, 26, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
- Demir, R.; Küçükoğlu, M.S. Six-Minute Walk Test in Pulmonary Arterial Hypertension. Anadolu Kardiyol. Derg. 2015, 15, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Six-Minute Walking Distance Predicts Fall Risk in Elderly Patients Hospitalized for Heart Failure. Available online: https://www.jstage.jst.go.jp/article/jalliedhealthsci/8/2/8_110/_pdf/-char/ja (accessed on 24 May 2024).
Characteristic | Frail, n = 8 (13.4%) | Pre-Frail, n = 23 (38.3%) | Non-Frail, n = 29 (48.3%) |
---|---|---|---|
Male, (Female) | 7, (1) | 18, (5) | 21, (8) |
Age, years | 78.38 ± 5.50 | 70.87 ± 8.02 | 70.21 ± 6.49 |
Height, cm | 159.38 ± 7.22 | 163.87 ± 7.4 | 163.84 ± 8.06 |
Weight, kg | 52.7 ± 12.42 | 67.27 ± 11.37 | 63.3 ± 10.71 |
Body mass index, kg/m2 | 20.64 ± 4.07 | 24.99 ± 3.67 | 23.64 ± 3.98 |
Handgrip strength, kg | 22.65 ± 5.89 | 28.13 ± 7.62 | 32.42 ± 6.83 |
5-m walking speed, m/s | 0.96 ± 0.30 | 1.25 ± 0.24 | 1.36 ± 0.18 |
Items | Assessment Criteria |
---|---|
(1) Weight Loss (WL) | Questionnaires: (Yes = 1, No = 0) Have you lost 2 kg or more in the past 6 months? |
(2) Exhaustion (EX) | Questionnaires: (Yes = 1, No = 0) In the past 2 weeks, have you felt tired without a reason? |
(3) Physical Activity (PA) | Questionnaires: (“No” to both questions = 1, others = 0) Do you engage in moderate levels of physical exercise or sports aimed at health? Do you engage in low levels of physical exercise aimed at health? |
(4) Handgrip Strength (HS) | Clinical test: (Yes = 1, No = 0) Men: <26 kg, Women: <18 kg |
(5) Walking Speed (SP) | Clinical test: (Yes = 1, No = 0) Speed < 1.0 m/s (obtained by five-meter walking test) |
Parameter | Group | Mean ± SD | Pairwise 95% CI * | Group * | p-Value | d-Value |
---|---|---|---|---|---|---|
SL | Frail | 0.52 ± 0.17 | 0.40–0.64 | F and PF | 0.026 | 0.964 |
Pre-Frail | 0.61 ± 0.07 | 0.58–0.64 | PF and NF | 0.015 | 0.707 | |
Non-Frail | 0.67 ± 0.09 | 0.64–0.70 | ||||
SC | Frail | 1.88 ± 0.09 | 1.82–1.94 | F and PF | <0.001 | 1.712 |
Pre-Frail | 2.15 ± 0.17 | 2.08–2.22 | PF and NF | 0.570 | 0.160 | |
Non-Frail | 2.12 ± 0.11 | 2.08–2.16 | ||||
GV | Frail | 0.97 ± 0.33 | 0.74–1.20 | F and PF | <0.001 | 1.509 |
Pre-Frail | 1.32 ± 0.19 | 1.24–1.40 | PF and NF | 0.059 | 0.538 | |
Non-Frail | 1.43 ± 0.21 | 1.35–1.51 | ||||
6MWD | Frail | 253 ± 118 | 172–335 | F and PF | <0.001 | 1.508 |
Pre-Frail | 385 ± 76 | 355–417 | PF and NF | 0.019 | 0.672 | |
Non-Frail | 430 ± 60 | 409–453 | ||||
6MWEE | Frail | 11.10 ± 5.01 | 7.31–14.88 | F and PF | <0.001 | 1.705 |
Pre-Frail | 19.70 ± 4.58 | 17.75–21.66 | PF and NF | 0.171 | 0.388 | |
Non-Frail | 21.48 ± 4.40 | 19.81–23.14 |
Parameter | SL | SC | ||||||
---|---|---|---|---|---|---|---|---|
No * | Yes * | p-Value | d-Value | No * | Yes * | p-Value | d-Value | |
WL | 0.63 ± 0.11 | 0.61 ± 0.11 | 0.512 | 0.238 | 2.11 ± 0.15 | 2.03 ± 0.20 | 0.182 | 0.488 |
HS | 0.65 ± 0.08 | 0.54 ± 0.13 | <0.001 | 1.129 | 2.11 ± 0.14 | 2.07 ± 0.21 | 0.442 | 0.237 |
EX | 0.63 ± 0.11 | 0.61 ± 0.09 | 0.469 | 0.228 | 2.13 ± 0.14 | 1.99 ± 0.17 | 0.004 | 0.952 |
SP | 0.65 ± 0.08 | 0.47 ± 0.13 | <0.001 | 1.725 | 2.13 ± 0.14 | 1.91 ± 0.14 | <0.001 | 1.406 |
AC | 0.65 ± 0.10 | 0.58 ± 0.12 | 0.037 | 0.610 | 2.11 ± 0.15 | 2.09 ± 0.18 | 0.666 | 0.125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Morita, M.; Hirano, T.; Doi, K.; Han, X.; Matsunaga, K.; Jiang, Z. A Novel Method for Identifying Frailty and Quantifying Muscle Strength Using the Six-Minute Walking Test. Sensors 2024, 24, 4489. https://doi.org/10.3390/s24144489
Zhang Y, Morita M, Hirano T, Doi K, Han X, Matsunaga K, Jiang Z. A Novel Method for Identifying Frailty and Quantifying Muscle Strength Using the Six-Minute Walking Test. Sensors. 2024; 24(14):4489. https://doi.org/10.3390/s24144489
Chicago/Turabian StyleZhang, Yunjin, Minoru Morita, Tsunahiko Hirano, Keiko Doi, Xin Han, Kazuto Matsunaga, and Zhongwei Jiang. 2024. "A Novel Method for Identifying Frailty and Quantifying Muscle Strength Using the Six-Minute Walking Test" Sensors 24, no. 14: 4489. https://doi.org/10.3390/s24144489
APA StyleZhang, Y., Morita, M., Hirano, T., Doi, K., Han, X., Matsunaga, K., & Jiang, Z. (2024). A Novel Method for Identifying Frailty and Quantifying Muscle Strength Using the Six-Minute Walking Test. Sensors, 24(14), 4489. https://doi.org/10.3390/s24144489