Preliminary Application of Infrared Thermography to Monitoring of Skin Temperature Asymmetries in Professional Padel Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures and Experimental Design
2.3. Skin Temperature Assessment
2.4. Statistical Analysis
3. Results
3.1. Dominant vs. Non-Dominant
3.2. Skin Temperature Variation by Training
3.3. Correlations Analysis
4. Discussion
4.1. Dominant vs. Non-Dominant
4.2. Skin Temperature Variation by Training
4.3. Correlation Analysis
4.4. Experimental Considerations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Denche-Zamorano, A.; Escudero-Tena, A.; Pereira-Payo, D.; Adsuar, J.C.; Muñoz, D. Scientific Mapping of the State-of-the-Art in Padel. A Bibliometric Analysis. Int. J. Sports Sci. Coach. 2023, 19, 17479541231161993. [Google Scholar] [CrossRef]
- Escudero-Tena, A.; Sánchez-Alcaraz, B.J.; García-Rubio, J.; Ibáñez, S.J. Analysis of Game Performance Indicators during 2015–2019 World Padel Tour Seasons and Their Influence on Match Outcome. Int. J. Environ. Res. Public Health 2021, 18, 4904. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, D.; Díaz, J.; Quintero, M.P.; Grijota, F.J.; Ibáñez, J.C.; Martínez, B.J.S.A. Efectos del volumen de práctica de pádel sobre la composición corporal en jugadores amateurs. Acción Mot. 2019, 22, 17–22. [Google Scholar]
- Courel-Ibáñez, J.; Herrera-Gálvez, J.J. Fitness Testing in Padel: Performance Differences According to Players’ Competitive Level. Sci. Sports 2020, 35, e11–e19. [Google Scholar] [CrossRef]
- Demeco, A.; de Sire, A.; Marotta, N.; Spanò, R.; Lippi, L.; Palumbo, A.; Iona, T.; Gramigna, V.; Palermi, S.; Leigheb, M.; et al. Match Analysis, Physical Training, Risk of Injury and Rehabilitation in Padel: Overview of the Literature. Int. J. Environ. Res. Public Health 2022, 19, 4153. [Google Scholar] [CrossRef]
- Phomsoupha, M.; Laffaye, G. The Science of Badminton: Game Characteristics, Anthropometry, Physiology, Visual Fitness and Biomechanics. Sports Med. 2015, 45, 473–495. [Google Scholar] [CrossRef] [PubMed]
- Delgado-García, G.; Vanrenterghem, J.; Molina-García, P.; Gómez-López, P.; Ocaña-Wilhelmi, F.; y Soto-Hermoso, V.M. Upper Limbs Asymmetries in Young Competitive Paddle—Tennis Players. Rev. Multidiscip. De Las Cienc. Del Deporte 2022, 22, 827–843. [Google Scholar]
- Muñoz Marín, D.; Toro Román, V.; Grijota Pérez, F.J.; Courel Ibáñez, J.; Sánchez Pay, A.; Sánchez Alcaraz Martínez, B.J. Análisis antropométrico y de somatotipo en jugadores de pádel en función de su nivel de juego. Retos Nuevas Tend. En Educ. Física Deporte Y Recreación 2021, 41, 285–290. [Google Scholar]
- Dahmen, J.; Emanuel, K.S.; Fontanellas-Fes, A.; Verhagen, E.; Kerkhoffs, G.M.M.J.; Pluim, B.M. Incidence, Prevalence and Nature of Injuries in Padel: A Systematic Review. BMJ Open Sport Exerc. Med. 2023, 9, e001607. [Google Scholar] [CrossRef]
- Marzano-Felisatti, J.M.; Martinez-Amaya, A.; Priego-Quesada, J.I. Preliminary Analysis of Skin Temperature Asymmetries in Elite Young Tennis Players. Appl. Sci. 2023, 13, 628. [Google Scholar] [CrossRef]
- Sanchis-Sanchis, R.; Priego-Quesada, J.I.; Ribas-Garcia, V.; Carpes, F.P.; Encarnacion-Martinez, A.; Perez-Soriano, P. Effects of Asymmetrical Exercise Demands on the Symmetry of Skin Temperature in Archers. Physiol. Meas. 2020, 41, 114002. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Fernandes, A.; dos Santos Amorim, P.R.; Brito, C.J.; de Moura, A.G.; Moreira, D.G.; Costa, C.M.A.; Sillero-Quintana, M.; Marins, J.C.B. Measuring Skin Temperature before, during and after Exercise: A Comparison of Thermocouples and Infrared Thermography. Physiol. Meas. 2014, 35, 189. [Google Scholar] [CrossRef] [PubMed]
- Ring, E.F.J.; Ammer, K. The Technique of Infrared Imaging in Medicine. In Infrared Imaging: A Casebook in Clinical Medicine; IOP Publishing: Philadelphia, PA, USA, 2015. [Google Scholar]
- Fernández-Cuevas, I.; Arnáiz Lastras, J.; Escamilla Galindo, V.; Gómez Carmona, P. Infrared Thermography for the Detection of Injury in Sports Medicine. In Application of Infrared Thermography in Sports Science; Priego Quesada, J.I., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 81–109. ISBN 978-3-319-47410-6. [Google Scholar]
- Cuddy, J.S.; Hailes, W.S.; Ruby, B.C. A Reduced Core to Skin Temperature Gradient, Not a Critical Core Temperature, Affects Aerobic Capacity in the Heat. J. Therm. Biol. 2014, 43, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Gil-Calvo, M.; Herrero-Marco, J.; de Jesús González-Peña, R.; Perez-Soriano, P.; Priego-Quesada, J.I. Acute Effect of Induced Asymmetrical Running Technique on Foot Skin Temperature. J. Therm. Biol. 2020, 91, 102613. [Google Scholar] [CrossRef]
- Vardasca, R. Symmetry of Temperature Distribution in the Upper and Lower Extremities. Thermol. Int. 2012, 18, 154–155. [Google Scholar]
- Chudecka, M.; Lubkowska, A.; Leźnicka, K.; Krupecki, K. The Use of Thermal Imaging in the Evaluation of the Symmetry of Muscle Activity in Various Types of Exercises (Symmetrical and Asymmetrical). J. Hum. Kinet. 2015, 49, 141–147. [Google Scholar] [CrossRef]
- Amaro, A.M.; Paulino, M.F.; Neto, M.A.; Roseiro, L. Hand-Arm Vibration Assessment and Changes in the Thermal Map of the Skin in Tennis Athletes during the Service. Int. J. Environ. Res. Public Health 2019, 16, 5117. [Google Scholar] [CrossRef] [PubMed]
- Brengelmann, G.L.; Johnson, J.M.; Hermansen, L.; Rowell, L.B. Altered Control of Skin Blood Flow during Exercise at High Internal Temperatures. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1977, 43, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Merla, A.; Mattei, P.A.; Di Donato, L.; Romani, G.L. Thermal Imaging of Cutaneous Temperature Modifications in Runners During Graded Exercise. Ann. Biomed. Eng. 2010, 38, 158–163. [Google Scholar] [CrossRef]
- Formenti, D.; Ludwig, N.; Gargano, M.; Gondola, M.; Dellerma, N.; Caumo, A.; Alberti, G. Thermal Imaging of Exercise-Associated Skin Temperature Changes in Trained and Untrained Female Subjects. Ann. Biomed. Eng. 2013, 41, 863–871. [Google Scholar] [CrossRef]
- Cramer, M.N.; Gagnon, D.; Laitano, O.; Crandall, C.G. Human Temperature Regulation under Heat Stress in Health, Disease, and Injury. Physiol. Rev. 2022, 102, 1907–1989. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.M. Exercise and the Cutaneous Circulation. Exerc. Sport. Sci. Rev. 1992, 20, 59–97. [Google Scholar]
- Kenney, W.L.; Johnson, J.M. Control of Skin Blood Flow during Exercise. Med. Sci. Sports Exerc. 1992, 24, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Fritzsche, R.G.; Coyle, E.F. Cutaneous Blood Flow during Exercise Is Higher in Endurance-Trained Humans. J. Appl. Physiol. 2000, 88, 738–744. [Google Scholar] [CrossRef]
- Martínez-Navarro, I.; Aparicio, I.; Priego-Quesada, J.I.; Pérez-Soriano, P.; Collado, E.; Hernando, B.; Hernando, C. Effects of Wearing a Full Body Compression Garment during Recovery from an Ultra-Trail Race. Eur. J. Sport. Sci. 2021, 21, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Zamunér, A.R.; Moreno, M.A.; Camargo, T.M.; Graetz, J.P.; Rebelo, A.C.S.; Tamburús, N.Y.; da Silva, E. Assessment of Subjective Perceived Exertion at the Anaerobic Threshold with the Borg CR-10 Scale. J. Sports Sci. Med. 2011, 10, 130–136. [Google Scholar]
- Marins, J.C.B.; Moreira, D.G.; Cano, S.P.; Quintana, M.S.; Soares, D.D.; de Andrade Fernandes, A.; da Silva, F.S.; Costa, C.M.A.; dos Santos Amorim, P.R. Time Required to Stabilize Thermographic Images at Rest. Infrared Phys. Technol. 2014, 65, 30–35. [Google Scholar] [CrossRef]
- Singh, J.; Arora, A.S. Automated Approaches for ROIs Extraction in Medical Thermography: A Review and Future Directions. Multimed. Tools Appl. 2020, 79, 15273–15296. [Google Scholar] [CrossRef]
- Moreira, D.G.; Costello, J.T.; Brito, C.J.; Adamczyk, J.G.; Ammer, K.; Bach, A.J.E.; Costa, C.M.A.; Eglin, C.; Fernandes, A.A.; Fernández-Cuevas, I.; et al. Thermographic Imaging in Sports and Exercise Medicine: A Delphi Study and Consensus Statement on the Measurement of Human Skin Temperature. J. Therm. Biol. 2017, 69, 155–162. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013; ISBN 978-1-4832-7648-9. [Google Scholar]
- Arnaiz-Lastras, J.; Fernández Cuevas, I.; Lopez-Diaz, C.J.; Carmona, P.; Quintana, M. Aplicación Práctica de La Termografía Infrarroja En El Fútbol Profesional. Rev. Prep. Física Fútbol 2014, 3, 6–15. [Google Scholar]
- Priego Quesada, J.I.; Lucas-Cuevas, A.G.; Salvador Palmer, R.; Pérez-Soriano, P.; Cibrián Ortiz de Anda, R.M. Definition of the Thermographic Regions of Interest in Cycling by Using a Factor Analysis. Infrared Phys. Technol. 2016, 75, 180–186. [Google Scholar] [CrossRef]
- De Prado, F.; Sánchez Alcaraz Martínez, B.J.; García Navarro, J.; Burruezo López, A. Prevención de lesiones en el padel. Trances: Transm. Conoc. Educ. Salud 2014, 6, 175–188. [Google Scholar]
- Martinez-Rodriguez, A.; Roche Collado, E.; Vicente-Salar, N. Estudio de La Composición Corporal de Jugadores Adultos de Pádel y Tenis. Nutr. Hosp. 2015, 31, 1294–1301. [Google Scholar] [CrossRef]
- Charkoudian, N. Human Thermoregulation from the Autonomic Perspective. Auton. Neurosci. Basic Clin. 2016, 196, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Perez, I.; Gil-Calvo, M.; Priego-Quesada, J.I.; Aparicio, I.; Pérez-Soriano, P.; Ortiz de Anda, R.M.C. Effect of Prefabricated Thermoformable Foot Orthoses on Plantar Surface Temperature after Running: A Gender Comparison. J. Therm. Biol. 2020, 91, 102612. [Google Scholar] [CrossRef] [PubMed]
- Tanda, G. Skin Temperature Measurements by Infrared Thermography during Running Exercise. Exp. Therm. Fluid Sci. 2016, 71, 103–113. [Google Scholar] [CrossRef]
- Priego-Quesada, J.I.; Pérez-Guarner, A.; Gandia-Soriano, A.; Oficial-Casado, F.; Galindo, C.; de Anda, R.M.C.O.; Piñeiro-Ramos, J.D.; Sánchez-Illana, Á.; Kuligowski, J.; Barbosa, M.A.G.; et al. Effect of a Marathon on Skin Temperature Response After a Cold-Stress Test and Its Relationship With Perceptive, Performance, and Oxidative-Stress Biomarkers. Int. J. Sports Physiol. Perform. 2020, 15, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- García Benítez, S.; Pérez Bilbao, T.; Echegaray, M.; Felipe Hernández, J.L. Influencia del género en la estructura temporal y las acciones de juego del pádel profesional. Cult. Cienc. Deporte 2016, 11, 241–247. [Google Scholar]
- Torres-Luque, G.; Ramirez, A.; Cabello-Manrique, D.; Nikolaidis, T.P.; Alvero-Cruz, J.R. Match Analysis of Elite Players during Paddle Tennis Competition. Int. J. Perform. Anal. Sport 2015, 15, 1135–1144. [Google Scholar] [CrossRef]
- Colomar, J.; Baiget, E.; Corbi, F. Influence of Strength, Power, and Muscular Stiffness on Stroke Velocity in Junior Tennis Players. Front. Physiol. 2020, 11, 196. [Google Scholar] [CrossRef]
- Koronas, V.; Koutlianos, N. Muscle activation during forehand and backhand drives in the sport discipline of tennis. Facta Univ. Ser. Phys. Educ. Sport 2021, 18, 601–609. [Google Scholar] [CrossRef]
- Collins, K.S.; Klawitter, L.A.; Waldera, R.W.; Mahoney, S.J.; Christensen, B.K. Differences in Muscle Activity and Kinetics Between the Goblet Squat and Landmine Squat in Men and Women. J. Strength Cond. Res. 2021, 35, 2661–2668. [Google Scholar] [CrossRef] [PubMed]
- García-Giménez, A.; Pradas de la Fuente, F.; Castellar Otín, C.; Carrasco Páez, L. Performance Outcome Measures in Padel: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 4395. [Google Scholar] [CrossRef] [PubMed]
- Giles, B.; Reid, M. Applying the Brakes in Tennis: How Entry Speed Affects the Movement and Hitting Kinematics of Professional Tennis Players. J. Sports Sci. 2021, 39, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Del Villar, F.; García González, L.; Iglesias, D.; Perla Moreno, M.; Cervelló, E.M. Expert-Novice Differences in Cognitive and Execution Skills during Tennis Competition. Percept Mot Ski. 2007, 104, 355–365. [Google Scholar] [CrossRef]
- Mellado Arbelo, Ó.; Baiget Vidal, E.; Vivès Usón, M. Analysis of game actions in professional male padel. Análisis Acciones Juego Pádel Masculino Prof. 2019, 14, 191–201. [Google Scholar] [CrossRef]
ROIs | Moment | Non-Dominant | Dominant | p-Value (ES) |
---|---|---|---|---|
Anterior arm | PRE | 30.7 ± 0.8 | 31.1 ± 0.7 | 0.23 (0.6) |
POST | 29.7 ± 1.0 | 30.4 ± 0.9 | 0.12 (0.7) | |
POST10 | 30.6 ± 0.5 | 31.2 ± 0.5 | 0.01 (1.3) | |
Anterior forearm | PRE | 30.1 ± 0.9 | 30.7 ± 0.9 | 0.15 (0.7) |
POST | 29.1 ± 1.2 | 30.8 ± 0.4 | <0.01 (1.9) | |
POST10 | 30.5 ± 1.1 | 31.7 ± 0.6 | <0.01 (1.4) | |
Anterior shoulder | PRE | 31.3 ± 0.6 | 31.5 ± 0.6 | 0.47 (0.3) |
POST | 30.9 ± 0.7 | 31.6 ± 0.7 | 0.04 (1.0) | |
POST10 | 31.3 ± 0.5 | 31.8 ± 0.3 | <0.01 (1.4) | |
Posterior arm | PRE | 28.9 ± 1.1 | 29.0 ± 1.0 | 0.83 (0.1) |
POST | 28.4 ± 1.2 | 29.5 ± 1.0 | 0.03 (1.0) | |
POST10 | 28.7 ± 0.8 | 29.8 ± 0.6 | <0.01 (1.5) | |
Posterior forearm | PRE | 29.5 ± 1.1 | 29.5 ± 1.2 | 0.88 (0.1) |
POST | 30.8 ± 0.9 | 29.3 ± 1.6 | 0.04 (1.1) | |
POST10 | 29.7 ± 0.9 | 30.8 ± 0.6 | <0.01 (1.5) |
ROI (Tsk Dominance) | ∆Fatigue | ∆Pain | Years of Experience | Racket Mass | Training Hours | Age |
---|---|---|---|---|---|---|
|r| | |r| | |r| | |r| | |r| | |r| | |
Abdominals | 0. | 0.08 | 0.60 | 0.13 | 0.01 | 0.51 |
Lower back | 0.42 | 0.06 | 0.16 | 0.36 | 0.44 | 0.36 |
Ant. Arm | 0.12 | 0.00 | 0.05 | 0.31 | 0.32 | 0.16 |
Post. Arm | 0.32 | 0.10 | 0.18 | 0.31 | 0.16 | 0.09 |
Ant. Forearm | 0.18 | 0.33 | 0.12 | 0.35 | 0.56 | 0.01 |
Post. Forearm | 0.33 | 0.10 | 0.03 | 0.13 | 0.24 | 0.11 |
Ant. Shoulder | 0.42 | 0.42 | 0.32 | 0.00 | 0.03 | 0.14 |
Post. Shoulder | 0.32 | 0.13 | 0.16 | 0.11 | 0.41 | 0.21 |
Ant. Knee | 0.00 | 0.22 | 0.34 | 0.81 ** | 0.49 | 0.26 |
Post. Knee | 0.18 | 0.18 | 0.11 | 0.32 | 0.21 | 0.25 |
Ant. Leg | 0.15 | 0.05 | 0.07 | 0.06 | 0.34 | 0.02 |
Post. Leg | 0.03 | 0.16 | 0.36 | 0.02 | 0.04 | 0.40 |
Ant. Thigh | 0.42 | 0.41 | 0.35 | 0.04 | 0.27 | 0.03 |
Post. Thigh | 0.08 | 0.12 | 0.38 | 0.22 | 0.38 | 0.69 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De León-Muñoz, A.; Priego-Quesada, J.I.; Marzano-Felisatti, J.M.; Sanchez-Jimenez, J.L.; Sendra-Pérez, C.; Aparicio-Aparicio, I. Preliminary Application of Infrared Thermography to Monitoring of Skin Temperature Asymmetries in Professional Padel Players. Sensors 2024, 24, 4534. https://doi.org/10.3390/s24144534
De León-Muñoz A, Priego-Quesada JI, Marzano-Felisatti JM, Sanchez-Jimenez JL, Sendra-Pérez C, Aparicio-Aparicio I. Preliminary Application of Infrared Thermography to Monitoring of Skin Temperature Asymmetries in Professional Padel Players. Sensors. 2024; 24(14):4534. https://doi.org/10.3390/s24144534
Chicago/Turabian StyleDe León-Muñoz, Alberto, Jose Ignacio Priego-Quesada, Joaquín Martín Marzano-Felisatti, Jose Luis Sanchez-Jimenez, Carlos Sendra-Pérez, and Inmaculada Aparicio-Aparicio. 2024. "Preliminary Application of Infrared Thermography to Monitoring of Skin Temperature Asymmetries in Professional Padel Players" Sensors 24, no. 14: 4534. https://doi.org/10.3390/s24144534
APA StyleDe León-Muñoz, A., Priego-Quesada, J. I., Marzano-Felisatti, J. M., Sanchez-Jimenez, J. L., Sendra-Pérez, C., & Aparicio-Aparicio, I. (2024). Preliminary Application of Infrared Thermography to Monitoring of Skin Temperature Asymmetries in Professional Padel Players. Sensors, 24(14), 4534. https://doi.org/10.3390/s24144534