The Overlay, a New Solution for Volume Variations in the Residual Limb for Individuals with a Transtibial Amputation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Materials
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Comfortable Gait
3.2. 6MWT Task
3.3. Sit-to-Stand Task
3.4. Pain, Comfort, and Satisfaction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Inclusion | Exclusion |
---|---|
Be at least 18 years old | No stump injury |
TTA | Underwent amputation at least 1 year ago |
Activity level K2–K4 [17] | Harmony or thigh corset |
Diameter of residual limb between 18–34 cm | Length of residual limb below knee at least 10 cm |
At least 3 folds of variations during a day | 84 (±16) |
Appendix B. Instructions
References
- Imam, B.; Miller, W.C.; Finlayson, H.C.; Eng, J.J.; Jarus, T. Incidence of Lower Limb Amputation in Canada. Can. J. Public Health 2017, 108, e374–e380. [Google Scholar] [CrossRef] [PubMed]
- Grzebień, A.; Chabowski, M.; Malinowski, M.; Uchmanowicz, I.; Milan, M.; Janczak, D. Analysis of Selected Factors Determining Quality of Life in Patients after Lower Limb Amputation—A Review Article. Pol. J. Surg. 2017, 89, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.K.; Charan, M.; Kanagaraj, S. Trends and Challenges in Lower Limb Prosthesis. IEEE Potentials 2017, 36, 19–23. [Google Scholar] [CrossRef]
- De Marchis, C.; Ranaldi, S.; Varrecchia, T.; Serrao, M.; Castiglia, S.F.; Tatarelli, A.; Ranavolo, A.; Draicchio, F.; Lacquaniti, F.; Conforto, S. Characterizing the Gait of People with Different Types of Amputation and Prosthetic Components through Multimodal Measurements: A Methodological Perspective. Front. Rehabil. Sci. 2022, 3, 804746. [Google Scholar] [CrossRef] [PubMed]
- Miramand, L.; Moisan, G.; Richard, V.; McFadyen, B.J.; Turcot, K. Whole Body Movement Strategies during Sit-to-Stand and Stair Ascent in Individuals with a Lower Limb Amputation: A Systematic Review. Clin. Biomech. 2022, 100, 105811. [Google Scholar] [CrossRef] [PubMed]
- Hashimto, A.H.; Kobayashi, T.; Gao, F. The Effect of Transverse Prosthetic Alignment Changes on Socket Reaction Moments during Gait in Individuals with Transtibial Amputation. Gait Posture 2018, 65, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Orendurff, M.S.; Boone, D.A. Effect of Alignment Changes on Socket Reaction Moments during Gait in Transfemoral and Knee-Disarticulation Prostheses: Case Series. J. Biomech. 2013, 46, 2539–2545. [Google Scholar] [CrossRef] [PubMed]
- Gailey, R.; Allen, K.; Castles, J.; Kucharik, J.; Roeder, M. Review of Secondary Physical Conditions Associated with Lower-Limb Amputation and Long-Term Prosthesis Use. J. Rehabil. Res. Dev. 2008, 45, 15–30. [Google Scholar] [CrossRef]
- Sanders, J.E.; Cagle, J.C.; Allyn, K.J.; Harrison, D.S.; Ciol, M.A. How Do Walking, Standing, and Resting Influence Transtibial Amputee Residual Limb Fluid Volume? J. Rehabil. Res. Dev. 2014, 51, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.E.; Fatone, S. Residual Limb Volume Change: Systematic Review of Measurement and Management. J. Rehabil. Res. Dev. 2011, 48, 949. [Google Scholar] [CrossRef]
- Sanders, J.E.; Youngblood, R.T.; Hafner, B.J.; Ciol, M.A.; Allyn, K.J.; Gardner, D.; Cagle, J.C.; Redd, C.B.; Dietrich, C.R. Residual Limb Fluid Volume Change and Volume Accommodation. Prosthet. Orthot. Int. 2018, 42, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Youngblood, R.T.; Hafner, B.J.; Allyn, K.J.; Cagle, J.C.; Hinrichs, P.; Redd, C.; Vamos, A.C.; Ciol, M.A.; Bean, N.; Sanders, J.E. Effects of Activity Intensity, Time, and Intermittent Doffing on Daily Limb Fluid Volume Change in People with Transtibial Amputation. Prosthet. Orthot. Int. 2019, 43, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Klenow, T.; Schulz, J. Adjustable-Volume Prosthetic Sockets: Market Overview and Value Propositions. Can. Prosthet. Orthot. J. 2021, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Dillingham, T.; Kenia, J.; Shofer, F.; Marschalek, J. A Prospective Assessment of an Adjustable, Immediate Fit, Transtibial Prosthesis. PM&R 2019, 11, 1210–1217. [Google Scholar] [CrossRef]
- Seo, J.; Lee, H.; Seo, D.W.; Lee, D.; Kwon, O.; Kwak, M.K.; Lee, K.H. A Prosthetic Socket with Active Volume Compensation for Amputated Lower Limb. Sensors 2021, 21, 407. [Google Scholar] [CrossRef] [PubMed]
- Pirouzi, G.; Abu Osman, N.A.; Oshkour, A.A.; Ali, S.; Gholizadeh, H.; Wan Abas, W.A.B. Development of an Air Pneumatic Suspension System for Transtibial Prostheses. Sensors 2014, 14, 16754–16765. [Google Scholar] [CrossRef] [PubMed]
- Dillon, M.P.; Major, M.J.; Kaluf, B.; Balasanov, Y.; Fatone, S. Predict the Medicare Functional Classification Level (K-Level) Using the Amputee Mobility Predictor in People with Unilateral Transfemoral and Transtibial Amputation: A Pilot Study. Prosthet. Orthot. Int. 2018, 42, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Schmalz, T.; Bellmann, M.; Proebsting, E.; Blumentritt, S. Effects of Adaptation to a Functionally New Prosthetic Lower-Limb Component. JPO J. Prosthet. Orthot. 2014, 26, 134–143. [Google Scholar] [CrossRef]
- Kammin, E.J. The 6-Minute Walk Test: Indications and Guidelines for Use in Outpatient Practices. J. Nurse Pract. 2022, 18, 608–610. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.D.; Cristofolini, L.; Witte, H.; et al. ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Moisan, G.; Miramand, L.; Younesian, H.; Legrand, T.; Turcot, K. Assessment of Biomechanical Deficits in Individuals with a Trans-Tibial Amputation during Level Gait Using One-Dimensional Statistical Parametric Mapping. Gait Posture 2021, 87, 130–135. [Google Scholar] [CrossRef]
- Turcot, K.; Armand, S.; Fritschy, D.; Hoffmeyer, P.; Suvà, D. Sit-to-Stand Alterations in Advanced Knee Osteoarthritis. Gait Posture 2012, 36, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.; Burnfield, J. Gait Analysis: Normal and Pathological Function. J. Pediatr. Orthop. 1992, 12, 815. [Google Scholar] [CrossRef]
- Pataky, T.C.; Vanrenterghem, J.; Robinson, M.A. Zero- vs. One-Dimensional, Parametric vs. Non-Parametric, and Confidence Interval vs. Hypothesis Testing Procedures in One-Dimensional Biomechanical Trajectory Analysis. J. Biomech. 2015, 48, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Prinsen, E.C.; Nederhand, M.J.; Rietman, J.S. Adaptation Strategies of the Lower Extremities of Patients with a Transtibial or Transfemoral Amputation during Level Walking: A Systematic Review. Arch. Phys. Med. Rehabil. 2011, 92, 1311–1325. [Google Scholar] [CrossRef] [PubMed]
- Özyürek, S.; Demirbüken, I.; Angin, S. Altered Movement Strategies in Sit-to-Stand Task in Persons with Transtibial Amputation. Prosthet. Orthot. Int. 2014, 38, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, V.; Gailey, R.; Gaunaurd, I.; Gailey, R.; O’Toole, C. Weight Distribution Symmetry during the Sit-to-Stand Movement of Unilateral Transtibial Amputees. Ergonomics 2011, 54, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Gailey, R.; Kristal, A.; Lucarevic, J.; Harris, S.; Applegate, B.; Gaunaurd, I. The Development and Internal Consistency of the Comprehensive Lower Limb Amputee Socket Survey in Active Lower Limb Amputees. Prosthet. Orthot. Int. 2019, 43, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.E.; Redd, C.B.; Cagle, J.C.; Hafner, B.J.; Gardner, D.; Allyn, K.J.; Harrison, D.S.; Ciol, M.A. Preliminary Evaluation of a Novel Bladder-Liner for Facilitating Residual Limb Fluid Volume Recovery without Doffing. J. Rehabil. Res. Dev. 2016, 53, 1107–1120. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.E.; Youngblood, R.T.; Hafner, B.J.; Cagle, J.C.; McLean, J.B.; Redd, C.B.; Dietrich, C.R.; Ciol, M.A.; Allyn, K.J. Effects of Socket Size on Metrics of Socket Fit in Trans-Tibial Prosthesis Users. Med. Eng. Phys. 2017, 44, 32–43. [Google Scholar] [CrossRef]
Characteristics | |
---|---|
Gender | 3 Females–5 Males |
Etiology | 3 Traumatic–4 Medical |
Age | 56 (±10) |
Height (m) | 1.70 (±0.1) |
Weight (kg) | 84 (±16) |
Time since amputation (year) | 13 (±9) |
Number of folds | 5 (±2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badaire, P.; Robert, M.T.; Turcot, K. The Overlay, a New Solution for Volume Variations in the Residual Limb for Individuals with a Transtibial Amputation. Sensors 2024, 24, 4744. https://doi.org/10.3390/s24144744
Badaire P, Robert MT, Turcot K. The Overlay, a New Solution for Volume Variations in the Residual Limb for Individuals with a Transtibial Amputation. Sensors. 2024; 24(14):4744. https://doi.org/10.3390/s24144744
Chicago/Turabian StyleBadaire, Pierre, Maxime T. Robert, and Katia Turcot. 2024. "The Overlay, a New Solution for Volume Variations in the Residual Limb for Individuals with a Transtibial Amputation" Sensors 24, no. 14: 4744. https://doi.org/10.3390/s24144744
APA StyleBadaire, P., Robert, M. T., & Turcot, K. (2024). The Overlay, a New Solution for Volume Variations in the Residual Limb for Individuals with a Transtibial Amputation. Sensors, 24(14), 4744. https://doi.org/10.3390/s24144744