How the Degree of Anthropomorphism of Human-like Robots Affects Users’ Perceptual and Emotional Processing: Evidence from an EEG Study
Abstract
:1. Introduction
2. Related Work
2.1. Anthropomorphism of Robots
2.2. Emotional Responses, Likeability, and Warmth on Robots
2.3. Electrophysiological Components Related to Perceptual Processing, Affective Processing, and Evaluation
2.3.1. The N1 Component
2.3.2. The P2 Component
2.3.3. The LPP Component
2.3.4. ERSP of Theta Band
- Biomarkers:
- 2.
- Emotional affect:
- 3.
- Level of robot anthropomorphism:
Variables | Low Anthropomorphic Robots (L-AR) | Middle Anthropomorphic Robots (M-AR) | High Anthropomorphic Robots (H-AR) |
---|---|---|---|
Biomarkers | |||
N1 | More Negative frontal and central N1 | ||
Frontal theta power | Increased | ||
P2 | Larger P2 | Larger P2 | Decreased P2 |
Emotional affect | |||
Affective arousal (LPP) | Greater LPP | Greater affective arousal | |
Parietal-occipital theta | Enhanced | ||
Overall neural patterns | Distinct patterns in early detection and later appraisal phases | Distinct patterns in early detection and later appraisal phases | Distinct patterns in early detection and later appraisal phases |
3. Method
3.1. Participants
3.2. Stimuli
3.3. Procedures
3.4. Electroencephalogram Data Recordings and Preprocessing
3.5. Data Analysis
3.5.1. ERP Analysis
3.5.2. Event-Related Spectral Perturbations (ERSPs) Analysis
3.5.3. Statistical Analysis
4. Results
4.1. Results for Subjective Rating Data
4.2. ERP Results
4.2.1. N1 Component (110–140 ms)
4.2.2. P2 Component (240–310 ms)
4.2.3. LPP Component (400–800 ms)
4.3. ERSP Results
4.4. Correlations between Emotional Responses, ERPs, and ERSP
5. Discussion
5.1. Behavioral Results Discussion
5.2. ERPs Related to Anthropomorphic Robots
5.2.1. N1 (110–140 ms): An Early Perceptual Detection of Anthropomorphic Robot Features (Hypotheses 1.1 and 3)
5.2.2. P2 (240–310 ms): A Selective Attentional Allocation of Anthropomorphic Robot Features (Hypotheses 1.2 and 3)
5.2.3. LPP (400–800 ms): An Affective Evaluation, Categorization and Motivated Attention of Anthropomorphic Robots (Hypotheses 2.1 and 3)
5.3. ERSP Related to Anthropomorphic Robots (Hypotheses 1.1, 2.2 and 3)
5.4. Correlations of EEG and Behavioral Measures, and the Two Stages
5.5. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Broekens, J.; Heerink, M.; Rosendal, H. Assistive Social Robots in Elderly Care: A Review. Gerontechnol. Int. J. Fundam. Asp. Technol. Serve Ageing Soc. 2009, 8, 94–103. [Google Scholar] [CrossRef]
- Robertson, J. Robo Sapiens Japanicus: Robots, Gender, Family, and the Japanese Nation; University of California Press: Berkeley, CA, USA, 2019. [Google Scholar]
- Van Doorn, J.; Mende, M.; Noble, S.M.; Hulland, J.; Ostrom, A.L.; Grewal, D.; Petersen, J.A. Domo Arigato Mr. Roboto: Emergence of Automated Social Presence in Organizational Frontlines and Customers’ Service Experiences. J. Serv. Res. 2017, 20, 43–58. [Google Scholar] [CrossRef]
- Phillips, E.; Zhao, X.; Ullman, D.; Malle, B.F. What Is Human-like?: Decomposing Robots’ Human-like Appearance Using the Anthropomorphic roBOT (ABOT) Database. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL, USA, 5–8 March 2018; ACM: Chicago, IL, USA, 2018; pp. 105–113. [Google Scholar]
- Stenzel, A.; Chinellato, E.; Bou, M.A.T.; Del Pobil, Á.P.; Lappe, M.; Liepelt, R. When Humanoid Robots Become Human-like Interaction Partners: Corepresentation of Robotic Actions. J. Exp. Psychol. Hum. Percept. Perform. 2012, 38, 1073. [Google Scholar] [CrossRef]
- Wiese, E.; Wykowska, A.; Zwickel, J.; Müller, H.J. I See What You Mean: How Attentional Selection Is Shaped by Ascribing Intentions to Others. PLoS ONE 2012, 7, e45391. [Google Scholar] [CrossRef] [PubMed]
- Epley, N. A Mind like Mine: The Exceptionally Ordinary Underpinnings of Anthropomorphism. J. Assoc. Consum. Res. 2018, 3, 591–598. [Google Scholar] [CrossRef]
- Wada, K.; Shibata, T.; Saito, T.; Tanie, K. Effects of Robot-Assisted Activity for Elderly People and Nurses at a Day Service Center. Proc. IEEE 2004, 92, 1780–1788. [Google Scholar] [CrossRef]
- Belpaeme, T.; Kennedy, J.; Ramachandran, A.; Scassellati, B.; Tanaka, F. Social Robots for Education: A Review. Sci. Robot. 2018, 3, eaat5954. [Google Scholar] [CrossRef]
- Mori, M. Bukimi No Tani [the Uncanny Valley]. Energy 1970, 7, 33–35. [Google Scholar]
- Lin, P.; Abney, K.; Bekey, G.A. Robot Ethics: The Ethical and Social Implications of Robotics; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Ho, C.-C.; MacDorman, K.F. Revisiting the Uncanny Valley Theory: Developing and Validating an Alternative to the Godspeed Indices. Comput. Hum. Behav. 2010, 26, 1508–1518. [Google Scholar] [CrossRef]
- Kim, S.Y.; Schmitt, B.H.; Thalmann, N.M. Eliza in the Uncanny Valley: Anthropomorphizing Consumer Robots Increases Their Perceived Warmth but Decreases Liking. Mark. Lett. 2019, 30, 1–12. [Google Scholar] [CrossRef]
- Mathur, M.B.; Reichling, D.B. Navigating a Social World with Robot Partners: A Quantitative Cartography of the Uncanny Valley. Cognition 2016, 146, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; MacDorman, K.F.; Kageki, N. The Uncanny Valley [from the Field]. IEEE Robot. Autom. Mag. 2012, 19, 98–100. [Google Scholar] [CrossRef]
- DiSalvo, C.F.; Gemperle, F.; Forlizzi, J.; Kiesler, S. All Robots Are Not Created Equal: The Design and Perception of Humanoid Robot Heads. In Proceedings of the 4th conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, Cambridge, MA, USA, 1–4 August 2002; pp. 321–326. [Google Scholar]
- Gray, K.; Wegner, D.M. Feeling Robots and Human Zombies: Mind Perception and the Uncanny Valley. Cognition 2012, 125, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Powers, A.; Kiesler, S. The Advisor Robot: Tracing People’s Mental Model from a Robot’s Physical Attributes. In Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, Salt Lake City, UT, USA, 2–3 March 2006; pp. 218–225. [Google Scholar]
- Rosenthal-Von Der Pütten, A.M.; Krämer, N.C. How Design Characteristics of Robots Determine Evaluation and Uncanny Valley Related Responses. Comput. Hum. Behav. 2014, 36, 422–439. [Google Scholar] [CrossRef]
- Chammat, M.; Foucher, A.; Nadel, J.; Dubal, S. Reading Sadness beyond Human Faces. Brain Res. 2010, 1348, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Chiang, A.-H.; Trimi, S.; Lo, Y.-J. Emotion and Service Quality of Anthropomorphic Robots. Technol. Forecast. Soc. Change 2022, 177, 121550. [Google Scholar] [CrossRef]
- Saygin, A.P.; Chaminade, T.; Ishiguro, H.; Driver, J.; Frith, C. The Thing That Should Not Be: Predictive Coding and the Uncanny Valley in Perceiving Human and Humanoid Robot Actions. Soc. Cogn. Affect. Neurosci. 2012, 7, 413–422. [Google Scholar] [CrossRef]
- Urgen, B.A.; Plank, M.; Ishiguro, H.; Poizner, H.; Saygin, A.P. EEG Theta and Mu Oscillations during Perception of Human and Robot Actions. Front. Neurorobot. 2013, 7, 19. [Google Scholar] [CrossRef]
- Urgen, B.A.; Kutas, M.; Saygin, A.P. Uncanny Valley as a Window into Predictive Processing in the Social Brain. Neuropsychologia 2018, 114, 181–185. [Google Scholar] [CrossRef]
- Bainbridge, W.A.; Hart, J.; Kim, E.S.; Scassellati, B. The Effect of Presence on Human-Robot Interaction. In Proceedings of the RO-MAN 2008-The 17th IEEE International Symposium on Robot and Human Interactive Communication, Munich, Germany, 1–3 August 2008; pp. 701–706. [Google Scholar]
- Hancock, P.A.; Billings, D.R.; Schaefer, K.E.; Chen, J.Y.; De Visser, E.J.; Parasuraman, R. A Meta-Analysis of Factors Affecting Trust in Human-Robot Interaction. Hum. Factors 2011, 53, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Abe, N.; Benallegue, M.; Yamanobe, N.; Venture, G.; Yoshida, E. Toward Active Physical Human–Robot Interaction: Quantifying the Human State during Interactions. IEEE Trans. Hum. Mach. Syst. 2022, 52, 367–378. [Google Scholar] [CrossRef]
- Chita-Tegmark, M.; Lohani, M.; Scheutz, M. Gender Effects in Perceptions of Robots and Humans with Varying Emotional Intelligence. In Proceedings of the 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Daegu, Republic of Korea, 11–14 March 2019; pp. 230–238. [Google Scholar]
- Nomura, T.; Shintani, T.; Fujii, K.; Hokabe, K. Experimental Investigation of Relationships between Anxiety, Negative Attitudes, and Allowable Distance of Robots. In Proceedings of the 2nd IASTED International Conference on Human Computer Interaction, Chamonix, France, 14–16 March 2007; ACTA Press: Calgary, AB, Canada, 2007; pp. 13–18. [Google Scholar]
- Paetzel-Prüsmann, M.; Perugia, G.; Castellano, G. The Influence of Robot Personality on the Development of Uncanny Feelings. Comput. Hum. Behav. 2021, 120, 106756. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.; Tang, L.H.; Lan, Z.; Cui, J.; Sourina, O.; Chen, C.-H. Detection of Humanoid Robot Design Preferences Using EEG and Eye Tracker. In Proceedings of the 2019 International Conference on Cyberworlds (CW), Kyoto, Japan, 2–4 October 2019; IEEE: Kyoto, Japan, 2019; pp. 219–224. [Google Scholar]
- Zhang, J.; Li, S.; Zhang, J.-Y.; Du, F.; Qi, Y.; Liu, X. A Literature Review of the Research on the Uncanny Valley. In Proceedings of the Cross-Cultural Design. User Experience of Products, Services, and Intelligent Environments: 12th International Conference, CCD 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, 19–24 July 2020; Proceedings, Part I 22. pp. 255–268. [Google Scholar]
- Chaminade, T.; Zecca, M.; Blakemore, S.-J.; Takanishi, A.; Frith, C.D.; Micera, S.; Dario, P.; Rizzolatti, G.; Gallese, V.; Umiltà, M.A. Brain Response to a Humanoid Robot in Areas Implicated in the Perception of Human Emotional Gestures. PLoS ONE 2010, 5, e11577. [Google Scholar] [CrossRef] [PubMed]
- Shimada, M.; Minato, T.; Itakura, S.; Ishiguro, H. Uncanny Valley of Androids and Its Lateral Inhibition Hypothesis. In Proceedings of the RO-MAN 2007-The 16th IEEE International Symposium on Robot and Human Interactive Communication, Jeju, Republic of Korea, 26–29 August 2007; pp. 374–379. [Google Scholar]
- Mustafa, M.; Guthe, S.; Tauscher, J.-P.; Goesele, M.; Magnor, M. How Human Am I? EEG-Based Evaluation of Virtual Characters. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 5098–5108. [Google Scholar]
- Cheetham, M.; Wu, L.; Pauli, P.; Jancke, L. Arousal, Valence, and the Uncanny Valley: Psychophysiological and Self-Report Findings. Front. Psychol. 2015, 6, 981. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Li, M.; Chen, J.; Duffy, V.G. Evaluating Users’ Preference for the Appearance of Humanoid Robots via Event-Related Potentials and Spectral Perturbations. Behav. Inf. Technol. 2022, 41, 1381–1397. [Google Scholar] [CrossRef]
- Kim, D.-G.; Kim, H.-Y.; Kim, G.; Jang, P.-S.; Jung, W.H.; Hyun, J.-S. Exploratory Understanding of the Uncanny Valley Phenomena Based on Event-Related Potential Measurement. Sci. Emot. Sensib. 2016, 19, 95–110. [Google Scholar] [CrossRef]
- Schindler, S.; Zell, E.; Botsch, M.; Kissler, J. Differential Effects of Face-Realism and Emotion on Event-Related Brain Potentials and Their Implications for the Uncanny Valley Theory. Sci. Rep. 2017, 7, 45003. [Google Scholar] [CrossRef] [PubMed]
- Vaitonytė, J.; Alimardani, M.; Louwerse, M.M. Scoping Review of the Neural Evidence on the Uncanny Valley. Comput. Hum. Behav. Rep. 2022, 9, 100263. [Google Scholar] [CrossRef]
- Epley, N.; Waytz, A.; Cacioppo, J.T. On Seeing Human: A Three-Factor Theory of Anthropomorphism. Psychol. Rev. 2007, 114, 864. [Google Scholar] [CrossRef]
- Bartneck, C.; Kulić, D.; Croft, E.; Zoghbi, S. Measurement Instruments for the Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots. Int. J. Soc. Robot. 2009, 1, 71–81. [Google Scholar] [CrossRef]
- Duffy, B.R. Anthropomorphism and the Social Robot. Robot. Auton. Syst. 2003, 42, 177–190. [Google Scholar] [CrossRef]
- Aggarwal, P.; McGill, A.L. Is That Car Smiling at Me? Schema Congruity as a Basis for Evaluating Anthropomorphized Products. J. Consum. Res. 2007, 34, 468–479. [Google Scholar] [CrossRef]
- Huang, F.; Wong, V.C.; Wan, E.W. The Influence of Product Anthropomorphism on Comparative Judgment. J. Consum. Res. 2020, 46, 936–955. [Google Scholar] [CrossRef]
- Landwehr, J.R.; McGill, A.L.; Herrmann, A. It’s Got the Look: The Effect of Friendly and Aggressive “Facial” Expressions on Product Liking and Sales. J. Mark. 2011, 75, 132–146. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, Y.; Ding, Y.; Duffy, V.G.; Zhang, X. Is an Anthropomorphic App Icon More Attractive? Evidence from Neuroergonomomics. Appl. Ergon. 2021, 97, 103545. [Google Scholar] [CrossRef] [PubMed]
- Kervyn, N.; Fiske, S.T.; Malone, C. Brands as Intentional Agents Framework: How Perceived Intentions and Ability Can Map Brand Perception. J. Consum. Psychol. 2012, 22, 166–176. [Google Scholar] [CrossRef]
- MacInnis, D.J.; Folkes, V.S. Humanizing Brands: When Brands Seem to Be like Me, Part of Me, and in a Relationship with Me. J. Consum. Psychol. 2017, 27, 355–374. [Google Scholar] [CrossRef]
- Puzakova, M.; Kwak, H.; Rocereto, J.F. When Humanizing Brands Goes Wrong: The Detrimental Effect of Brand Anthropomorphization amid Product Wrongdoings. J. Mark. 2013, 77, 81–100. [Google Scholar] [CrossRef]
- Bailenson, J.N.; Yee, N.; Brave, S.; Merget, D.; Koslow, D. Virtual Interpersonal Touch: Expressing and Recognizing Emotions through Haptic Devices. Hum. Comput. Interact. 2007, 22, 325–353. [Google Scholar]
- Lee, K.M.; Peng, W.; Jin, S.-A.; Yan, C. Can Robots Manifest Personality?: An Empirical Test of Personality Recognition, Social Responses, and Social Presence in Human–Robot Interaction. J. Commun. 2006, 56, 754–772. [Google Scholar] [CrossRef]
- Bates, J. The Role of Emotion in Believable Agents. Commun. ACM 1994, 37, 122–125. [Google Scholar] [CrossRef]
- MacDorman, K.F. Subjective Ratings of Robot Video Clips for Human Likeness, Familiarity, and Eeriness: An Exploration of the Uncanny Valley. In Proceedings of the ICCS/CogSci-2006 Long Symposium: Toward Social Mechanisms of Android Science, Vancouver, BC, Canada, 26 July 2006; pp. 26–29. [Google Scholar]
- Roesler, E.; Naendrup-Poell, L.; Manzey, D.; Onnasch, L. Why Context Matters: The Influence of Application Domain on Preferred Degree of Anthropomorphism and Gender Attribution in Human–Robot Interaction. Int. J. Soc. Robot. 2022, 14, 1155–1166. [Google Scholar] [CrossRef]
- Wang, S.; Lilienfeld, S.O.; Rochat, P. The Uncanny Valley: Existence and Explanations. Rev. Gen. Psychol. 2015, 19, 393–407. [Google Scholar] [CrossRef]
- Minato, T.; Shimada, M.; Itakura, S.; Lee, K.; Ishiguro, H. Does Gaze Reveal the Human Likeness of an Android? In Proceedings of the 4th International Conference on Development and Learning, Hong Kong, China, 31 July–3 August 2005; pp. 106–111. [Google Scholar]
- Burleigh, T.J.; Schoenherr, J.R.; Lacroix, G.L. Does the Uncanny Valley Exist? An Empirical Test of the Relationship between Eeriness and the Human Likeness of Digitally Created Faces. Comput. Hum. Behav. 2013, 29, 759–771. [Google Scholar] [CrossRef]
- MacDorman, K.F.; Green, R.D.; Ho, C.-C.; Koch, C.T. Too Real for Comfort? Uncanny Responses to Computer Generated Faces. Comput. Hum. Behav. 2009, 25, 695–710. [Google Scholar] [CrossRef] [PubMed]
- Seyama, J.; Nagayama, R.S. The Uncanny Valley: Effect of Realism on the Impression of Artificial Human Faces. Presence 2007, 16, 337–351. [Google Scholar] [CrossRef]
- Bradley, M.M.; Lang, P.J. Emotion and Motivation. Handb. Psychophysiol. 2000, 2, 602–642. [Google Scholar]
- Liu, W.; Liang, X.; Wang, X.; Guo, F. The Evaluation of Emotional Experience on Webpages: An Event-Related Potential Study. Cogn. Technol. Work 2019, 21, 317–326. [Google Scholar] [CrossRef]
- Bartneck, C.; Kulic, D.; Croft, E. Measuring the Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots. Tech. Rep. 2008, 8, 37–44. [Google Scholar]
- Bartneck, C.; Kanda, T.; Ishiguro, H.; Hagita, N. Is the Uncanny Valley an Uncanny Cliff? In Proceedings of the RO-MAN 2007-The 16th IEEE International Symposium on Robot and Human Interactive Communication, Jeju, Republic of Korea, 26–29 August 2007; pp. 368–373. [Google Scholar]
- Sobieraj, S. What Is Virtually Beautiful Is Good: Der Einfluss Physiognomischer Und Nonverbaler Gesichtsmerkmale Auf Die Attribution von Attraktivität, Sozialer Kompetenz Und Dominanz [[Elektronische Ressource]]; Duisburg, Essen, Universität Duisburg-Essen: Duisburg, Germany, 2012. [Google Scholar]
- Fiske, S.T.; Cuddy, A.J.; Glick, P. Universal Dimensions of Social Cognition: Warmth and Competence. Trends Cogn. Sci. 2007, 11, 77–83. [Google Scholar] [CrossRef]
- Zhou, X.; Kim, S.; Wang, L. Money Helps When Money Feels: Money Anthropomorphism Increases Charitable Giving. J. Consum. Res. 2019, 45, 953–972. [Google Scholar] [CrossRef]
- Wortman, J.; Wood, D. The Personality Traits of Liked People. J. Res. Personal. 2011, 45, 519–528. [Google Scholar] [CrossRef]
- Camerer, C.; Yoon, C. Introduction to the Journal of Marketing Research Special Issue on Neuroscience and Marketing. J. Mark. Res. 2015, 52, 423–426. [Google Scholar] [CrossRef]
- Olofsson, J.K.; Polich, J. Affective Visual Event-Related Potentials: Arousal, Repetition, and Time-on-Task. Biol. Psychol. 2007, 75, 101–108. [Google Scholar] [CrossRef]
- Else, J.E.; Ellis, J.; Orme, E. Art Expertise Modulates the Emotional Response to Modern Art, Especially Abstract: An ERP Investigation. Front. Hum. Neurosci. 2015, 9, 525. [Google Scholar] [CrossRef] [PubMed]
- Eimer, M.; Holmes, A. An ERP Study on the Time Course of Emotional Face Processing. Neuroreport 2002, 13, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Wang, X.; Liu, W.; Ding, Y. Affective Preference Measurement of Product Appearance Based on Event-Related Potentials. Cogn. Technol. Work 2018, 20, 299–308. [Google Scholar] [CrossRef]
- Handy, T.C.; Smilek, D.; Geiger, L.; Liu, C.; Schooler, J.W. ERP Evidence for Rapid Hedonic Evaluation of Logos. J. Cogn. Neurosci. 2010, 22, 124–138. [Google Scholar] [CrossRef]
- Luck, S.J.; Woodman, G.F.; Vogel, E.K. Event-Related Potential Studies of Attention. Trends Cogn. Sci. 2000, 4, 432–440. [Google Scholar] [CrossRef]
- Keil, A.; Bradley, M.M.; Hauk, O.; Rockstroh, B.; Elbert, T.; Lang, P.J. Large-Scale Neural Correlates of Affective Picture Processing. Psychophysiology 2002, 39, 641–649. [Google Scholar] [CrossRef]
- Keil, A.; Müller, M.M.; Gruber, T.; Wienbruch, C.; Stolarova, M.; Elbert, T. Effects of Emotional Arousal in the Cerebral Hemispheres: A Study of Oscillatory Brain Activity and Event-Related Potentials. Clin. Neurophysiol. 2001, 112, 2057–2068. [Google Scholar] [CrossRef] [PubMed]
- Bradley, M.M.; Hamby, S.; Löw, A.; Lang, P.J. Brain Potentials in Perception: Picture Complexity and Emotional Arousal. Psychophysiology 2007, 44, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Luck, S.J. An Introduction to the Event-Related Potential Technique, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2014; ISBN 978-0-262-52585-5. [Google Scholar]
- Hajcak, G.; Weinberg, A.; MacNamara, A.; Foti, D. ERPs and the Study of Emotion. In The Oxford Handbook of Event-Related Potential Components; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Carretié, L.; Mercado, F.; Tapia, M.; Hinojosa, J.A. Emotion, Attention, and the ‘Negativity Bias’, Studied through Event-Related Potentials. Int. J. Psychophysiol. 2001, 41, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Herbert, C.; Kissler, J.; Junghöfer, M.; Peyk, P.; Rockstroh, B. Processing of Emotional Adjectives: Evidence from Startle EMG and ERPs. Psychophysiology 2006, 43, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, S.; Fize, D.; Marlot, C. Speed of Processing in the Human Visual System. Nature 1996, 381, 520–522. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Q.; Chen, A.; Li, H.; Wang, Q.; Zhuang, Z.; Jia, S. Are We Sensitive to Valence Differences in Emotionally Negative Stimuli? Electrophysiological Evidence from an ERP Study. Neuropsychologia 2007, 45, 2764–2771. [Google Scholar] [CrossRef]
- Huang, Y.-X.; Luo, Y.-J. Temporal Course of Emotional Negativity Bias: An ERP Study. Neurosci. Lett. 2006, 398, 91–96. [Google Scholar] [CrossRef]
- Pourtois, G.; Grandjean, D.; Sander, D.; Vuilleumier, P. Electrophysiological Correlates of Rapid Spatial Orienting towards Fearful Faces. Cereb. Cortex 2004, 14, 619–633. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Jin, J.; Yu, W.; Zhang, W.; Xu, Z.; Ma, Q. How Is the Neural Response to the Design of Experience Goods Related to Personalized Preference? An Implicit View. Front. Neurosci. 2018, 12, 760. [Google Scholar] [CrossRef]
- Schupp, H.T.; Cuthbert, B.N.; Bradley, M.M.; Cacioppo, J.T.; Ito, T.; Lang, P.J. Affective Picture Processing: The Late Positive Potential Is Modulated by Motivational Relevance. Psychophysiology 2000, 37, 257–261. [Google Scholar] [CrossRef]
- Cuthbert, B.N.; Schupp, H.T.; Bradley, M.M.; Birbaumer, N.; Lang, P.J. Brain Potentials in Affective Picture Processing: Covariation with Autonomic Arousal and Affective Report. Biol. Psychol. 2000, 52, 95–111. [Google Scholar] [CrossRef]
- Pastor, M.C.; Bradley, M.M.; Löw, A.; Versace, F.; Moltó, J.; Lang, P.J. Affective Picture Perception: Emotion, Context, and the Late Positive Potential. Brain Res. 2008, 1189, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Schupp, H.T.; Flaisch, T.; Stockburger, J.; Junghöfer, M. Emotion and Attention: Event-Related Brain Potential Studies. Prog. Brain Res. 2006, 156, 31–51. [Google Scholar] [CrossRef] [PubMed]
- Luck, S.J. Event-Related Potentials. In APA Handbook of Research Methods in Psychology, Vol. 1. Foundations, Planning, Measures, and Psychometrics; Cooper, H., Camic, P.M., Long, D.L., Panter, A.T., Rindskopf, D., Sher, K.J., Eds.; American Psychological Association: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Schupp, H.T.; Schmälzle, R.; Flaisch, T.; Weike, A.I.; Hamm, A.O. Affective Picture Processing as a Function of Preceding Picture Valence: An ERP Analysis. Biol. Psychol. 2012, 91, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Krompinger, J.W.; Moser, J.S.; Simons, R.F. Modulations of the Electrophysiological Response to Pleasant Stimuli by Cognitive Reappraisal. Emotion 2008, 8, 132. [Google Scholar] [CrossRef] [PubMed]
- Hajcak, G.; Moser, J.S.; Simons, R.F. Attending to Affect: Appraisal Strategies Modulate the Electrocortical Response to Arousing Pictures. Emotion 2006, 6, 517. [Google Scholar] [CrossRef]
- Aftanas, L.; Varlamov, A.; Pavlov, S.; Makhnev, V.; Reva, N. Affective Picture Processing: Event-Related Synchronization within Individually Defined Human Theta Band Is Modulated by Valence Dimension. Neurosci. Lett. 2001, 303, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Aftanas, L.; Golocheikine, S.A. Human Anterior and Frontal Midline Theta and Lower Alpha Reflect Emotionally Positive State and Internalized Attention: High-Resolution EEG Investigation of Meditation. Neurosci. Lett. 2001, 310, 57–60. [Google Scholar] [CrossRef]
- Kawasaki, M.; Yamaguchi, Y. Effects of Subjective Preference of Colors on Attention-Related Occipital Theta Oscillations. NeuroImage 2012, 59, 808–814. [Google Scholar] [CrossRef]
- Hasselmo, M.E.; Stern, C.E. Theta Rhythm and the Encoding and Retrieval of Space and Time. Neuroimage 2014, 85, 656–666. [Google Scholar] [CrossRef]
- Aftanas, L.I.; Pavlov, S.V.; Reva, N.V.; Varlamov, A.A. Trait Anxiety Impact on the EEG Theta Band Power Changes during Appraisal of Threatening and Pleasant Visual Stimuli. Int. J. Psychophysiol. 2003, 50, 205–212. [Google Scholar] [CrossRef]
- Brier, M.R.; Ferree, T.C.; Maguire, M.J.; Moore, P.; Spence, J.; Tillman, G.D.; Hart, J., Jr.; Kraut, M.A. Frontal Theta and Alpha Power and Coherence Changes Are Modulated by Semantic Complexity in Go/NoGo Tasks. Int. J. Psychophysiol. 2010, 78, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Womelsdorf, T.; Vinck, M.; Leung, L.S.; Everling, S. Selective Theta-Synchronization of Choice-Relevant Information Subserves Goal-Directed Behavior. Front. Hum. Neurosci. 2010, 4, 210. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.J. International Affective Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual. In Handbook of Emotion Elicitation and Assessment; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Homan, R.W.; Herman, J.; Purdy, P. Cerebral Location of International 10–20 System Electrode Placement. Electroencephalogr. Clin. Neurophysiol. 1987, 66, 376–382. [Google Scholar] [CrossRef]
- Wu, J.; Du, X.; Tong, M.; Guo, Q.; Shao, J.; Chabebe, A.; Xue, C. Neural Mechanisms behind Semantic Congruity of Construction Safety Signs: An EEG Investigation on Construction Workers. Hum. Factors Ergon. Manuf. Serv. Ind. 2023, 33, 229–245. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Zhao, M.; Xue, C. Cognitive Characteristics in Wayfinding Tasks in Commercial and Residential Districts during Daytime and Nighttime: A Comprehensive Neuroergonomic Study. Adv. Eng. Inform. 2024, 61, 102534. [Google Scholar] [CrossRef]
- Lydon, E.A.; Nguyen, L.T.; Shende, S.A.; Chiang, H.-S.; Spence, J.S.; Mudar, R.A. EEG Theta and Alpha Oscillations in Early versus Late Mild Cognitive Impairment during a Semantic Go/NoGo Task. Behav. Brain Res. 2022, 416, 113539. [Google Scholar] [CrossRef] [PubMed]
- Blankertz, B.; Lemm, S.; Treder, M.; Haufe, S.; Müller, K.-R. Single-Trial Analysis and Classification of ERP Components—A Tutorial. NeuroImage 2011, 56, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Bradley, M.M.; Lang, P.J. Emotion and Motivation. In Handbook of Psychophysiology, 3rd ed.; Cacioppo, J.T., Tassinary, L.G., Berntson, G.G., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Sundar, S.S.; Jung, E.H.; Waddell, T.F.; Kim, K.J. Cheery Companions or Serious Assistants? Role and Demeanor Congruity as Predictors of Robot Attraction and Use Intentions among Senior Citizens. Int. J. Hum. Comput. Stud. 2017, 97, 88–97. [Google Scholar] [CrossRef]
- Vogel, E.K.; Luck, S.J. The Visual N1 Component as an Index of a Discrimination Process. Psychophysiology 2000, 37, 190–203. [Google Scholar] [CrossRef]
- García-Larrea, L.; Lukaszewicz, A.-C.; Mauguiére, F. Revisiting the Oddball Paradigm. Non-Target vs Neutral Stimuli and the Evaluation of ERP Attentional Effects. Neuropsychologia 1992, 30, 723–741. [Google Scholar] [CrossRef]
- Kiesler, S.; Goetz, J. Mental Models and Cooperation with Robotic Assistants. Retrieved on 24 November 2004; 2002. [Google Scholar]
- Hansen, C.H.; Hansen, R.D. Finding the Face in the Crowd: An Anger Superiority Effect. J. Pers. Soc. Psychol. 1988, 54, 917. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Luo, Y.-J. Anxiety and Attentional Bias for Threat: An Event-Related Potential Study. Neuroreport 2005, 16, 1501–1505. [Google Scholar] [CrossRef]
- Looser, C.E.; Guntupalli, J.S.; Wheatley, T. Multivoxel Patterns in Face-Sensitive Temporal Regions Reveal an Encoding Schema Based on Detecting Life in a Face. Soc. Cogn. Affect. Neurosci. 2013, 8, 799–805. [Google Scholar] [CrossRef]
- Wheatley, T.; Weinberg, A.; Looser, C.; Moran, T.; Hajcak, G. Mind Perception: Real but Not Artificial Faces Sustain Neural Activity beyond the N170/VPP. PLoS ONE 2011, 6, e17960. [Google Scholar] [CrossRef] [PubMed]
- Foti, D.; Hajcak, G.; Dien, J. Differentiating Neural Responses to Emotional Pictures: Evidence from Temporal-Spatial PCA. Psychophysiology 2009, 46, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Tung, F.-W. Child Perception of Humanoid Robot Appearance and Behavior. Int. J. Hum.-Comput. Interact. 2016, 32, 493–502. [Google Scholar] [CrossRef]
- Hajcak, G.; Nieuwenhuis, S. Reappraisal Modulates the Electrocortical Response to Unpleasant Pictures. Cogn. Affect. Behav. Neurosci. 2006, 6, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.A.; Cacioppo, J.T. Electrophysiological Evidence of Implicit and Explicit Categorization Processes. J. Exp. Soc. Psychol. 2000, 36, 660–676. [Google Scholar] [CrossRef]
- Olofsson, J.K.; Nordin, S.; Sequeira, H.; Polich, J. Affective Picture Processing: An Integrative Review of ERP Findings. Biol. Psychol. 2008, 77, 247–265. [Google Scholar] [CrossRef]
- Spreckelmeyer, K.N.; Kutas, M.; Urbach, T.P.; Altenmüller, E.; Münte, T.F. Combined Perception of Emotion in Pictures and Musical Sounds. Brain Res. 2006, 1070, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, T.; Höfel, L. Descriptive and Evaluative Judgment Processes: Behavioral and Electrophysiological Indices of Processing Symmetry and Aesthetics. Cogn. Affect. Behav. Neurosci. 2003, 3, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Quadflieg, S. In Our Own Image? Emotional and Neural Processing Differences When Observing Human–Human vs Human–Robot Interactions. Soc. Cogn. Affect. Neurosci. 2015, 10, 1515–1524. [Google Scholar] [CrossRef]
- Brenner, C.A.; Rumak, S.P.; Burns, A.M.; Kieffaber, P.D. The Role of Encoding and Attention in Facial Emotion Memory: An EEG Investigation. Int. J. Psychophysiol. 2014, 93, 398–410. [Google Scholar] [CrossRef]
- Knyazev, G.; Slobodskoj-Plusnin, J.Y.; Bocharov, A. Event-Related Delta and Theta Synchronization during Explicit and Implicit Emotion Processing. Neuroscience 2009, 164, 1588–1600. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Liu, X.; Duan, X.; Wang, D.; Shen, J. Distraction Reduces Theta Synchronization in Emotion Regulation during Adolescence. Neurosci. Lett. 2013, 550, 81–86. [Google Scholar] [CrossRef]
- Guillem, K.; Ahmed, S.H. Reorganization of Theta Phase-Locking in the Orbitofrontal Cortex Drives Cocaine Choice under the Influence. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Czaja, S.J.; Charness, N.; Fisk, A.D.; Hertzog, C.; Nair, S.N.; Rogers, W.A.; Sharit, J. Factors Predicting the Use of Technology: Findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE). Psychol. Aging 2006, 21, 333. [Google Scholar] [CrossRef] [PubMed]
- Mitzner, T.L.; Boron, J.B.; Fausset, C.B.; Adams, A.E.; Charness, N.; Czaja, S.J.; Dijkstra, K.; Fisk, A.D.; Rogers, W.A.; Sharit, J. Older Adults Talk Technology: Technology Usage and Attitudes. Comput. Hum. Behav. 2010, 26, 1710–1721. [Google Scholar] [CrossRef] [PubMed]
Locations | Pairwise | p of Comparing N1 Component Amplitude | p of Comparing P2 Component Amplitude | p of Comparing LPP Component Amplitude |
---|---|---|---|---|
Frontal | H–M | 0.003 ** | <0.001 *** | <0.001 *** |
H–L | 0.430 | <0.001 *** | 1.000 | |
M–L | 0.064 | 0.205 | <0.001 *** | |
Frontal-central | H–M | 0.004 ** | <0.001 *** | <0.001 *** |
H–L | 1.000 | <0.001 *** | 0.325 | |
M–L | 0.030 * | 0.727 | <0.001 *** | |
Central | H–M | 0.017 * | <0.001 *** | <0.001 *** |
H–L | 1.000 | <0.001 *** | 0.271 | |
M–L | 0.010 * | 0.800 | <0.001 ** | |
Centro-parietal | H–M | - | <0.001 *** | <0.001 *** |
H–L | - | <0.001 *** | 0.483 | |
M–L | - | 0.369 | 0.002 ** | |
Parietal | H–M | - | <0.001 *** | 0.001 ** |
H–L | - | <0.001 *** | 1.000 | |
M–L | - | 0.010 * | 0.003 ** | |
Parietal-occipital | H–M | - | <0.001 *** | 0.003 ** |
H–L | - | 0.027 * | 0.688 | |
M–L | - | <0.001 *** | 0.013 * |
Regions of Interest (ROIs) | Time of Interest (TOIs) | H-AR | M-AR | L-AR | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
Frontal cluster | 50–380 ms | 2.214 | 0.136 | 2.229 | 0.186 | 1.689 | 0.151 |
Parietal-occipital cluster | 2.357 | 0.161 | 2.759 | 0.192 | 2.596 | 0.248 | |
Frontal cluster | 400–1000 ms | 0.693 | 0.100 | 1.119 | 0.183 | 0.699 | 0.171 |
Parietal-occipital cluster | 0.453 | 0.154 | 1.353 | 0.199 | 1.087 | 0.188 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Du, X.; Liu, Y.; Tang, W.; Xue, C. How the Degree of Anthropomorphism of Human-like Robots Affects Users’ Perceptual and Emotional Processing: Evidence from an EEG Study. Sensors 2024, 24, 4809. https://doi.org/10.3390/s24154809
Wu J, Du X, Liu Y, Tang W, Xue C. How the Degree of Anthropomorphism of Human-like Robots Affects Users’ Perceptual and Emotional Processing: Evidence from an EEG Study. Sensors. 2024; 24(15):4809. https://doi.org/10.3390/s24154809
Chicago/Turabian StyleWu, Jinchun, Xiaoxi Du, Yixuan Liu, Wenzhe Tang, and Chengqi Xue. 2024. "How the Degree of Anthropomorphism of Human-like Robots Affects Users’ Perceptual and Emotional Processing: Evidence from an EEG Study" Sensors 24, no. 15: 4809. https://doi.org/10.3390/s24154809
APA StyleWu, J., Du, X., Liu, Y., Tang, W., & Xue, C. (2024). How the Degree of Anthropomorphism of Human-like Robots Affects Users’ Perceptual and Emotional Processing: Evidence from an EEG Study. Sensors, 24(15), 4809. https://doi.org/10.3390/s24154809