Characterization of Great Toe Extension Strength Using ToeScale—A Novel Portable Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Inclusion Criteria, and Measurement Protocol
2.2. Great Toe Extension Strength Characterization and Classification
2.3. Data Analysis Plan
3. Results
3.1. Demographics
3.2. Traditional Analyses
3.3. Machine Learning Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mann, R.A.; Hagy, J.L. The function of the toes in walking, jogging and running. Clin. Orthop. Relat. Res. 1979, 142, 24–29. [Google Scholar] [CrossRef]
- Fujita, M. Role of the metatarsophalangeal (MTP) joints of the foot in level walking. Nihon Seikeigeka Gakkai Zasshi 1985, 59, 985–997. [Google Scholar] [PubMed]
- Miyazaki, M. Role and Movement of the Toes During Walking. Nihon Seikeigeka Gakkai Zasshi 1993, 67, 606–616. [Google Scholar] [PubMed]
- Fanous, J.; Rice, C. How Important is the Big Toe?: Functional Anatomy of Hallux Flexion. The FASEB Journal 2021, 35. [Google Scholar] [CrossRef]
- Nawoczenski, D.A.; Baumhauer, J.F.; Umberger, B.R. Relationship Between Clinical Measurements and Motion of the First Metatarsophalangeal Joint During Gait*. J. Bone Jt. Surg. 1999, 81, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.L.; Peterson, C.L.; Kautz, S.A.; Neptune, R.R. Relationships between muscle contributions to walking subtasks and functional walking status in persons with post-stroke hemiparesis. Clin. Biomech. 2011, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Goldmann, J.-P.; Brüggemann, G.-P. The potential of human toe flexor muscles to produce force. J. Anat. 2012, 221, 187–194. [Google Scholar] [CrossRef]
- Goldmann, J.-P.; Sanno, M.; Willwacher, S.; Heinrich, K.; Brüggemann, G.-P. The potential of toe flexor muscles to enhance performance. J. Sports Sci. 2013, 31, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, J.; Koyama, K. Force-generating capacity of the toe flexor muscles and dynamic function of the foot arch in upright standing. J. Anat. 2019, 234, 515–522. [Google Scholar] [CrossRef]
- Mickle, K.J.; Munro, B.J.; Lord, S.R.; Menz, H.B.; Steele, J.R. ISB Clinical Biomechanics Award 2009: Toe weakness and deformity increase the risk of falls in older people. Clin. Biomech. 2009, 24, 787–791. [Google Scholar] [CrossRef]
- Nix, S.E.; Vicenzino, B.T.; Collins, N.J.; Smith, M.D. Gait parameters associated with hallux valgus: A systematic review. J. Foot Ankle Res. 2013, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Kamonseki, D.H.; Gonçalves, G.A.; Yi, L.C.; Júnior, I.L. Effect of stretching with and without muscle strengthening exercises for the foot and hip in patients with plantar fasciitis: A randomized controlled single-blind clinical trial. Man. Ther. 2016, 23, 76–82. [Google Scholar] [CrossRef]
- Yokozuka, M.; Okazaki, K.; Sakamoto, Y.; Takahashi, K. Correlation between functional ability, toe flexor strength, and plantar pressure of hallux valgus in young female adults: A cross-sectional study. J. Foot Ankle Res. 2020, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, S.; Fong Yan, A.; Sinclair, P.; Hunt, A. The evidence for improving balance by strengthening the toe flexor muscles: A systematic review. Gait Posture 2020, 81, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Futrell, E.E.; Roberts, D.; Toole, E. The effects of intrinsic foot muscle strengthening on functional mobility in older adults: A systematic review. J. Am. Geriatr. Soc. 2022, 70, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Jaffri, A.; Koldenhoven, R.; Saliba, S.; Hertel, J. Evidence of Intrinsic Foot Muscle Training in Improving Foot Function: A Systematic Review and Meta-analysis. J. Athl. Train. 2022, 58, 941–951. [Google Scholar] [CrossRef]
- de Souza, T.M.M.; de Oliveira Coutinho, V.G.; Tessutti, V.D.; de Oliveira, N.R.C.; Yi, L.C. Effects of intrinsic foot muscle strengthening on the medial longitudinal arch mobility and function: A systematic review. J. Bodyw. Mov. Ther. 2023, 36, 89–99. [Google Scholar] [CrossRef]
- Myerson, M.S.; Shereff, M.J. The pathological anatomy of claw and hammer toes. J. Bone Jt. Surg. 1989, 71, 45–49. [Google Scholar] [CrossRef]
- Bus, S.A.; Yang, Q.X.; Wang, J.H.; Smith, M.B.; Wunderlich, R.; Cavanagh, P.R. Intrinsic Muscle Atrophy and Toe Deformity in the Diabetic Neuropathic Foot: A magnetic resonance imaging study. Diabetes Care 2002, 25, 1444–1450. [Google Scholar] [CrossRef]
- Chung, K.W.; Suh, B.C.; Shy, M.E.; Cho, S.Y.; Yoo, J.H.; Park, S.W.; Moon, H.; Park, K.D.; Choi, K.G.; Kim, S.; et al. Different clinical and magnetic resonance imaging features between Charcot–Marie–Tooth disease type 1A and 2A. Neuromuscul. Disord. 2008, 18, 610–618. [Google Scholar] [CrossRef]
- Chang, R.; Kent-Braun, J.A.; Hamill, J. Use of MRI for volume estimation of tibialis posterior and plantar intrinsic foot muscles in healthy and chronic plantar fasciitis limbs. Clin. Biomech. 2012, 27, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Soysa, A.; Hiller, C.; Refshauge, K.; Burns, J. Importance and challenges of measuring intrinsic foot muscle strength. J. Foot Ankle Res. 2012, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Stewart, S.; Ellis, R.; Heath, M.; Rome, K. Ultrasonic evaluation of the abductor hallucis muscle in hallux valgus: A cross-sectional observational study. BMC Musculoskelet. Disord. 2013, 14, 45. [Google Scholar] [CrossRef] [PubMed]
- Jastifer, J.R. Intrinsic muscles of the foot: Anatomy, function, rehabilitation. Phys. Ther. Sport. 2023, 61, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Bryant, A.; Tinley, P.; Singer, K. Plantar pressure distribution in normal, hallux valgus and hallux limitus feet. Foot 1999, 9, 115–119. [Google Scholar] [CrossRef]
- Hara, Y.; Hara, N.; Matsudaira, K.; Oka, H. A comparison of muscle strength testing for great toe extension. J. Orthop. Sci. 2011, 16, 765–767. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, L. The differential effects of foot sole sensory on plantar pressure distribution between balance and gait. Gait Posture 2013, 37, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Mickle, K.J.; Angin, S.; Crofts, G.; Nester, C.J. Effects of Age on Strength and Morphology of Toe Flexor Muscles. J. Orthop. Sports Phys. Ther. 2016, 46, 1065–1070. [Google Scholar] [CrossRef]
- Lee, P.-Y.; Tsai, Y.-J.; Liao, Y.-T.; Yang, Y.-C.; Lu, F.-H.; Lin, S.-I. Reactive balance control in older adults with diabetes. Gait Posture 2018, 61, 67–72. [Google Scholar] [CrossRef]
- de Win, M.M.L.; Theuvenet, W.J.; Roche, P.W.; de Bie, R.A.; van Mameren, H. The paper grip test for screening on intrinsic muscle paralysis in the foot of leprosy patients. Int. J. Lepr. Other Mycobact. Dis. 2002, 70, 16–24. [Google Scholar]
- Spink, M.J.; Fotoohabadi, M.R.; Menz, H.B. Foot and ankle strength assessment using hand-held dynamometry: Reliability and age-related differences. Gerontology 2010, 56, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Ciesla, N.; Dinglas, V.; Fan, E.; Kho, M.; Kuramoto, J.; Needham, D. Manual Muscle Testing: A Method of Measuring Extremity Muscle Strength Applied to Critically Ill Patients. J. Vis. Exp. 2011, 50, e2632. [Google Scholar] [CrossRef]
- Bruening, D.A.; Ridge, S.T.; Jacobs, J.L.; Olsen, M.T.; Griffin, D.W.; Ferguson, D.H.; Bassett, K.E.; Johnson, A.W. Functional assessments of foot strength: A comparative and repeatability study. BMC Musculoskelet. Disord. 2019, 20, 608. [Google Scholar] [CrossRef]
- Wang, H.; Hile, E.; Ghazi, M. Apparatus and Method for Measuring Toe Flexion and Extension. U.S. Patent No. 11,402,284, 2 August 2022. [Google Scholar]
- Hile, E.S.; Ghazi, M.; Chandrashekhar, R.; Rippetoe, J.; Fox, A.; Wang, H. Development and Earliest Validation of a Portable Device for Quantification of Hallux Extension Strength (QuHalEx). Sensors 2023, 23, 4654. [Google Scholar] [CrossRef] [PubMed]
- Jamar Smart Hand Dynamometer. Available online: https://www.performancehealth.com/jamar-smart-hand-dynamometer (accessed on 11 July 2024).
- Yao, W.X. Motor-Unit Recruitment Plays an Important Role in Determining the Relationship Between Muscle Force and Force Variability. Biomed. J. Sci. Tech. Res. 2018, 8, 3. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Pareja-Blanco, F.; Aagaard, P.; González-Badillo, J.J. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin. Physiol. Funct. Imaging 2018, 38, 743–762. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, G.; Drake, F.L. Introduction to Python 3: Python Documentation Manual Part 1; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Singh, A.; Thakur, N.; Sharma, A. A review of supervised machine learning algorithms. In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016; pp. 1310–1315. [Google Scholar]
- Kumar, I.; Dogra, K.; Utreja, C.; Yadav, P. A Comparative Study of Supervised Machine Learning Algorithms for Stock Market Trend Prediction. In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018; pp. 1003–1007. [Google Scholar]
- Shetty, S.H.; Shetty, S.; Singh, C.; Rao, A. Supervised Machine Learning: Algorithms and Applications. In Fundamentals and Methods of Machine and Deep Learning; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2022; pp. 1–16. [Google Scholar] [CrossRef]
- Laaksonen, J.; Oja, E. Classification with learning k-nearest neighbors. In Proceedings of the International Conference on Neural Networks (ICNN’96), Washington, DC, USA, 3–6 June 1996; Volume 3, pp. 1480–1483. [Google Scholar] [CrossRef]
- Mahato, V.; O’Reilly, M.; Cunningham, P. A Comparison of k-NN Methods for Time Series Classification and Regression. In Proceedings of the 26th AIAI Irish Conference on Artificial Intelligence and Cognitive Science, Dublin, Ireland, 6–7 December 2018. [Google Scholar]
- Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A Brief Review of Nearest Neighbor Algorithm for Learning and Classification. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 1255–1260. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Zhang, X. Support Vector Machines. In Encyclopedia of Machine Learning and Data Mining; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2017; pp. 1214–1220. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Abe, T.; Tayashiki, K.; Nakatani, M.; Watanabe, H. Relationships of ultrasound measures of intrinsic foot muscle cross-sectional area and muscle volume with maximum toe flexor muscle strength and physical performance in young adults. J. Phys. Ther. Sci. 2016, 28, 14–19. [Google Scholar] [CrossRef]
- Nagano, K.; Okuyama, R.; Taniguchi, N.; Yoshida, T. Gender difference in factors affecting the medial longitudinal arch height of the foot in healthy young adults. J. Phys. Ther. Sci. 2018, 30, 675–679. [Google Scholar] [CrossRef]
- Kawamori, N.; Rossi, S.J.; Justice, B.D.; Haff, E.E.; Pistilli, E.E.; O’bryant, H.S.; Stone, M.H.; Haff, G.G. Peak force and rate of force development during isometric and dynamic mid-thigh clean pulls performed at various intensities. J. Strength. Cond. Res. 2006, 20, 483. [Google Scholar] [PubMed]
- Andersen, L.L.; Aagaard, P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur. J. Appl. Physiol. 2006, 96, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Peñailillo, L.; Blazevich, A.; Numazawa, H.; Nosaka, K. Rate of force development as a measure of muscle damage. Scand. J. Med. Sci. Sports 2015, 25, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Farup, J.; Rahbek, S.K.; Bjerre, J.; de Paoli, F.; Vissing, K. Associated decrements in rate of force development and neural drive after maximal eccentric exercise. Scand. J. Med. Sci. Sports 2016, 26, 498–506. [Google Scholar] [CrossRef]
- Kamasaki, T.; Otao, H.; Tanaka, S.; Hachiya, M.; Kubo, A.; Okawa, H.; Sakamoto, A.; Fujiwara, K.; Suenaga, T.; Kichize, Y.; et al. Age-specific comparisons in the rate of force development of toe pressure strength and its association with the timed up and go test. Eur. Geriatr. Med. 2024, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sarikaya, F.; Sahin, M. The Effect of Big Toe Strength Development on Some Athletic Performance Parameter in Young Male Footballers. Pak. J. Med. Health Sci. 2022, 16, 997. [Google Scholar] [CrossRef]
- Arnold, P.; Vantieghem, S.; Gorus, E.; Lauwers, E.; Fierens, Y.; Pool-Goudzwaard, A.; Bautmans, I. Age-related differences in muscle recruitment and reaction-time performance. Exp. Gerontol. 2015, 70, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Manual muscle testing: Does it meet the standards of an adequate screening test? Clin. Rehabil. 2005, 19, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Sallinen, J.; Stenholm, S.; Rantanen, T.; Heliövaara, M.; Sainio, P.; Koskinen, S. Hand-Grip Strength Cut Points to Screen Older Persons at Risk for Mobility Limitation. J. Am. Geriatr. Soc. 2010, 58, 1721–1726. [Google Scholar] [CrossRef]
- Siqueira, V.A.A.A.; Sebastião, E.; Camic, C.L.; Machado, D.R.L. Higher Body Mass Index Values Do Not Impact Physical Function and Lower-Extremity Muscle Strength Performance in Active Older Individuals. Int. J. Exerc. Sci. 2022, 15, 330–340. [Google Scholar]
- Kim, M.-J.; Seino, S.; Kim, M.-K.; Yabushita, N.; Okura, T.; Okuno, J.; Tanaka, K. Validation of lower extremity performance tests for determining the mobility limitation levels in community-dwelling older women. Aging Clin. Exp. Res. 2009, 21, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Kusagawa, Y.; Kurihara, T.; Imai, A.; Maeo, S.; Sugiyama, T.; Kanehisa, H.; Isaka, T. Toe flexor strength is associated with mobility in older adults with pronated and supinated feet but not with neutral feet. J. Foot Ankle Res. 2020, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310. [Google Scholar] [CrossRef]
Variable | Total Sample | Older Adults | Younger Adults | p-Value | Males | Females | p-Value |
---|---|---|---|---|---|---|---|
Sample size | 31 | 17 | 14 | NA | 9 | 22 | NA |
Weight (Kg) | 65.29 (13.63) | 67.88 (15.05) | 62.14 (10.99) | 0.250 | 77.06 (14.38) | 60.47 (10.13) | 0.002 |
Height (m) | 1.67 (0.10) | 1.67 (0.11) | 1.66 (0.10) | 0.814 | 1.78 (0.09) | 1.62 (0.09) | <0.001 |
BMI (Kg/m2) | 23.31 (3.47) | 24.04 (3.44) | 22.43 (3.42) | 0.203 | 24.15 (3.68) | 22.97 (3.41) | 0.400 |
All Variables | All | Males | Females | p-Value | |
---|---|---|---|---|---|
Peak GTES (N) | Total Sample | 42.89 (15.47) | 54.82 (13.06) | 38.01 (13.82) | 0.004 |
Older | 39.32 (17.25) | 58.02 (18.09) | 33.57 (12.57) | ||
Younger | 47.22 (12.22) | 52.26 (8.79) | 44.42 (13.39) | ||
Average GTES (N) | Total Sample | 34.78 (13.15) | 42.45 (10.61) | 31.64 (12.98) | 0.04 |
Older | 31.58 (13.64) | 44.42 (13.62) | 27.63 (11.39) | ||
Younger | 38.67 (11.84) | 40.88 (8.88) | 37.44 (13.55) | ||
Rise Time (s) | Total Sample | 2.29 (1.94) | 1.02 (0.41) | 2.82 (2.09) | 0.02 |
Older | 2.94 (2.22) | 1.11 (0.62) | 3.5 (2.23) | ||
Younger | 1.52 (1.21) | 0.96 (0.17) | 1.83 (1.44) | ||
Rate of force development (RFD in N/s) | Total Sample | 28.64 (21.80) | 46.87 (14.76) | 21.18 (19.89) | 0.002 |
Older | 21.79 (20.09) | 49.17 (19.59) | 13.37 (12.21) | ||
Younger | 36.95 (20.82) | 45.02 (11.74) | 32.47 (23.91) | ||
Above Avg GTES (%) | Total Sample | 42.59 (13.53) | 50.22 (11.59) | 39.48 (13.24) | 0.04 |
Older | 36.15 (11.37) | 42.45 (10.61) | 34.21 (11.27) | ||
Younger | 50.42 (11.96) | 56.44 (8.69) | 47.08 (12.63) | ||
GS_N (N) | Total Sample | 259.14 (100.20) | 374.85 (66.11) | 211.81 (67.77) | <0.001 |
Older | 239.99 (93.56) | 355.37 (89.58) | 204.50 (67.76) | ||
Younger | 282.39 (103.26) | 390.44 (45.17) | 222.36 (70.39) |
Variables | Whole Sample a,b | Older Adults a | Younger Adults b | |||
---|---|---|---|---|---|---|
GS | BMI | GS | BMI | GS | BMI | |
Peak GTES | 0.545 * | 0.390 * | 0.519 * | 0.594 * | 0.546 * | 0.297 |
Average GTES | 0.512 * | 0.301 | 0.516 * | 0.513 * | 0.445 | 0.219 |
Rise Time | −0.431 * | 0.143 | −0.324 | 0.118 | −0.451 | −0.103 |
RFD | 0.568 * | 0.004 | 0.473 ^ | 0.152 | 0.403 | 0.133 |
GS | 1 | 0.155 | 1 | 0.414 | 1 | −0.012 |
BMI | 0.155 | 1 | 0.414 | 1 | −0.012 | 1 |
Model | Target Variable | Validation Accuracy (%) | Test Accuracy (%) | AUC |
---|---|---|---|---|
Support vector machine (SVM) | Age | 62.5 | 66.67 | 0.72 |
Sex | 75 | 66.67 | 0.14 | |
K-nearest neighbors (k-NN, k = 5) | Age | 62.5 | 66.67 | 0.75 |
Sex | 87.5 | 55.56 | 0.5 | |
K-nearest neighbors (k-NN, k = 10) | Age | 62.5 | 66.67 | 0.5 |
Sex | 75 | 77.78 | 0.36 | |
Random forest (RF) | Age | 62.5 | 66.67 | 0.67 |
Sex | 100 | 55.56 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandrashekhar, R.; Perez, L.F.; Wang, H. Characterization of Great Toe Extension Strength Using ToeScale—A Novel Portable Device. Sensors 2024, 24, 4841. https://doi.org/10.3390/s24154841
Chandrashekhar R, Perez LF, Wang H. Characterization of Great Toe Extension Strength Using ToeScale—A Novel Portable Device. Sensors. 2024; 24(15):4841. https://doi.org/10.3390/s24154841
Chicago/Turabian StyleChandrashekhar, Raghuveer, Luciana Fonseca Perez, and Hongwu Wang. 2024. "Characterization of Great Toe Extension Strength Using ToeScale—A Novel Portable Device" Sensors 24, no. 15: 4841. https://doi.org/10.3390/s24154841
APA StyleChandrashekhar, R., Perez, L. F., & Wang, H. (2024). Characterization of Great Toe Extension Strength Using ToeScale—A Novel Portable Device. Sensors, 24(15), 4841. https://doi.org/10.3390/s24154841