Retrospect on the Ground Deformation Process and Potential Triggering Mechanism of the Traditional Steel Production Base in Laiwu with ALOS PALSAR and Sentinel-1 SAR Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.1.1. Study Area
2.1.2. Traditional Mining Operation of Iron and Coal Ores
2.1.3. Tailing Pond Projects for Screening Iron Ore
2.1.4. Remote Sensing Datasets
2.1.5. Auxiliary Datasets
2.2. Methods
2.2.1. SBAS-InSAR Processing
2.2.2. Deformation Post-Processing and Risk Evaluation
3. Results
4. Discussion
4.1. Spatial Ground Deformation Evolution Characteristics
4.2. Temporal Ground Deformation Evolution Characteristics and Potential Triggering Mechanism
4.3. Evaluation of the Potential Ground Collapse Risks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Duan, Z.; Gao, J.; Hu, H.; Wen, G.; Li, J. Controls on metal fertility of dioritic intrusions in the Laiwu district, North China Craton: Insights from whole-rock geochemistry and mineral compositions. GSA Bull. 2023, 136, 1287–1308. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Shu, L.; Wang, Y.; Tong, F.; Han, J.; Shu, W.; Li, D.; Wen, J. The controlling factors of the karst water hydrochemistry in a karst basin of southwestern China. Environ. Earth Sci. 2021, 80, 793. [Google Scholar] [CrossRef]
- Ren, K.; Zeng, J.; Liang, J.; Yuan, D.; Jiao, Y.; Peng, C.; Pan, X. Impacts of acid mine drainage on karst aquifers: Evidence from hydrogeochemistry, stable sulfur and oxygen isotopes. Sci. Total Environ. 2021, 761, 143223. [Google Scholar] [CrossRef]
- Zhang, L.X.; Xiong, D.J.; Wang, J.N. Analysis and Evaluation of Karstic Collapse in Laiwu City. Shandong Land Resour. 2002, 18, 32–35+48. (In Chinese) [Google Scholar]
- Hu, S.; Xiong, X.; Li, X.; Chang, J.; Wang, M.; Xu, D.; Pan, A.; Zhou, W. Spatial distribution characteristics, risk assessment and management strategies of tailings ponds in China. Sci. Total Environ. 2024, 912, 169069. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, L.; Li, W.; Lin, L.; Ma, X.; Zheng, Y.; Meng, S.; Deng, Q. Characteristics and genesis of carbonate rocks’ hydrothermal dissolution in Laiwu Basin, Shandong Province, China. IOP Conf. Ser. Earth Environ. Sci. 2020, 546, 32053. [Google Scholar]
- Ying, J.; Zhou, X.; Zhang, H. The geochemical variations of mid-Cretaceous lavas across western Shandong Province, China and their tectonic implications. Int. J. Earth Sci. (Geol. Rundsch.) 2006, 95, 68–79. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, X.; Guan, Z.; Luo, W.; Wang, Y. AHP-based evaluation of the karst collapse susceptibility in Tailai Basin, Shandong Province, China. Environ. Earth Sci. 2018, 77, 436. [Google Scholar] [CrossRef]
- Yin, H.; Shi, Y.; Niu, H.; Ma, C.; Liu, G.; Zhai, P.; Zhang, J. Characteristics, detection, and prevention of karst sinkholes: A case study in Laiwu iron ore mine areas, Shandong Province, China. Environ. Earth Sci. 2018, 77, 136. [Google Scholar] [CrossRef]
- Jiang, X.; Dai, J.; Zheng, Z.; Li, X.J.; Ma, X.; Zhou, W.; Lei, Q. An overview on karst collapse mechanism in China. Carbonates Evaporites 2024, 39, 71. [Google Scholar] [CrossRef]
- Gao, Z.J. Study on the Mechanism and Cause Mode of the Karst Collapse—Taking Tai’an-Laiwu for Example. Strateg. Study CAE 2008, 10, 6. [Google Scholar]
- Zhang, X.Y.; Xue, L.; Wang, Y.; Qi, J.; Hou, W.H. The deep geological characteristics and metallogenic law of the I. deposit in Zhangjiawa mining area of Laiwu. J. Weifang Univ. 2015, 15, 4. (In Chinese) [Google Scholar]
- Qi, Y.; Li, W. Study on Present Condition and Strategy of Land Reclamation in Coal Mining Areas in Laiwu City. Shandong Land Resour. 2011, 27, 3. (In Chinese) [Google Scholar]
- Liu, S.F.; Gao, J.L.; Qiao, Z.B.; Zhang, X.M.; Qi, S.L.; Bai, F.Y.; Han, S.; Zhao, T.Q. Primary Study on Deep Coal Strata Characteristics and Occurrence Rules of Panxi Coal Deposit of Laiwu Coal Field in Shandong Province. Shandong Land Resour. 2013, 29, 4. (In Chinese) [Google Scholar]
- Chen, F.Z. Survey and prevention of coal gob subsidence in Laiwu. Shandong Coal Sci. Technol. 2017, 7, 171–174. (In Chinese) [Google Scholar] [CrossRef]
- Rana, N.M.; Ghahramani, N.; Evans, S.G.; McDougall, S.; Small, A.; Take, W.A. Catastrophic mass flows resulting from tailings impoundment failures. Eng. Geol. 2021, 292, 106262. [Google Scholar] [CrossRef]
- Xie, W.; Wu, J.; Gao, H.; Chen, J.; He, Y. SBAS-InSAR Based Deformation Monitoring of Tailings Dam: The Case Study of the Dexing Copper Mine No.4 Tailings Dam. Sensors 2023, 23, 9707. [Google Scholar] [CrossRef]
- Luo, Z.X. Stability Research of Yujiaquan Tailing Dam Construction to 370 m Elevation. Min. Eng. 2018, 16, 3. [Google Scholar]
- Chen, C.; Ma, B. Safety Assessment of Dam Failure of Tailings Pond Based on Variable Weight Method: A Case Study in China. Min. Metall. Explor. 2022, 39, 2401–2413. [Google Scholar] [CrossRef]
- Wang, K.; Yang, P.; Yu, G.; Yang, C.; Zhu, L. 3D Numerical Modelling of Tailings Dam Breach Run Out Flow over Complex Terrain: A Multidisciplinary Procedure. Water 2020, 12, 2538. [Google Scholar] [CrossRef]
- Global Precipitation Measurement. Available online: https://gpm.nasa.gov/data (accessed on 2 May 2024).
- Chinese Earthquake Networks Center. Available online: https://news.ceic.ac.cn/ (accessed on 10 May 2024).
- Chinese National Geographical Information Public Service Platform of Tianditu System. Available online: https://www.tianditu.gov.cn/ (accessed on 18 April 2024).
- Wu, W.B.; Ma, J.; Banzhaf, E.; Meadows, M.E.; Yu, Z.W.; Guo, F.X.; Sengupta, D.; Cai, X.X.; Zhao, B. A first Chinese building height estimate at 10 m resolution (CNBH-10 m) using multi-source earth observations and machine learning. Remote Sens. Environ. 2023, 291, 113578. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2003, 40, 2375–2383. [Google Scholar] [CrossRef]
- Ding, C.; Feng, G.; Zhang, L.; Liao, M. A Novel Multidimensional Perspective on Dynamic Characteristics of the Peculiar Feather-Shaped Dunes in Kumtag Desert with Time-Series Optical and SAR Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 11618–11631. [Google Scholar] [CrossRef]
- Ding, C.; Feng, G.; Li, Z.; Shan, X.; Du, Y.; Wang, H. Spatio-temporal error sources analysis and accuracy improvement in Landsat 8 image ground displacement measurements. Remote Sens. 2016, 8, 937. [Google Scholar] [CrossRef]
- Ding, C.; Feng, G.; Xiong, Z.; Zhang, L. Ground Subsidence, Driving Factors, and Risk Assessment of the Photovoltaic Power Generation and Greenhouse Planting (PPG&GP) Projects in Coal-Mining Areas of Xintai City Observed from a Multi-Temporal InSAR Perspective. Remote Sens. 2024, 16, 1109. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Zhang, Q.; Lu, Z.; Li, Z.; Yang, C.; Zhu, W.; Liu, Z.; Chen, L.; Liu, C. Integration of Sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha River corridor, China. Eng. Geol. 2021, 284, 106033. [Google Scholar] [CrossRef]
- Siddiqua, A.; Hahladakis, J.N.; Al-Attiya WA, K.A. An overview of the environmental pollution and health effects as-sociated with waste landfilling and open dumping. Environ. Sci. Pollut. Res. 2022, 29, 58514–58536. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Feng, G.; Liao, M.; Tao, P.; Zhang, L.; Xu, Q. Displacement history and potential triggering factors of Baige landslides, China revealed by optical imagery time series. Remote Sens. Environ. 2021, 254, 112253. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Z.; Li, S.; Nie, L.; Su, M.; Sun, H.; Fan, K.; Zhang, X.; Pang, Y. Comprehensive surface geophysical investigation of karst caves ahead of the tunnel face: A case study in the Xiaoheyan section of the water supply project from Songhua River, Jilin, China. J. Appl. Geophys. 2017, 144, 37–49. [Google Scholar]
- Du, Z.; Feng, L.; Wang, H.; Dong, Y.; Luo, D.; Zhang, X.; Liu, H.; Zhang, M. Identification of Ground Deformation Patterns in Coal Mining Areas via Rapid Topographical Analysis. Land 2023, 12, 1221. [Google Scholar] [CrossRef]
- Xu, J.; Gu, S.; Li, J.; Tian, X.; Li, L.; Xu, S. Monitoring and Risk Assessment of Urban Surface Deformation Based on PS-InSAR Technology: A Case Study of Nanjing City. IEEE J. Miniaturization Air Space Syst. 2024, 5, 73–78. [Google Scholar] [CrossRef]
- He, Y.; Zhao, Z.; Zhu, Q.; Liu, T.; Zhang, Q.; Yang, W.; Zhang, L.; Wang, Q. An integrated neural network method for landslide susceptibility assessment based on time-series InSAR deformation dynamic features. Int. J. Digit. Earth 2024, 17, 2295408. [Google Scholar] [CrossRef]
- Chai, L.; Xie, X.; Wang, C.; Tang, G.; Song, Z. Ground subsidence risk assessment method using PS-InSAR and LightGBM: A case study of Shanghai metro network. Int. J. Digit. Earth 2024, 17, 2297842. [Google Scholar] [CrossRef]
- Wang, G.; Li, P.; Li, Z.; Liu, J.; Zhang, Y.; Wang, H. InSAR and machine learning reveal new understanding of coastal subsidence risk in the Yellow River Delta, China. Sci. Total Environ. 2024, 915, 170203. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wang, F.; Wang, Y.; Jiang, W.; Qiao, Y.; Bai, W.; Zheng, X. An Urban Road Risk Assessment Framework Based on Convolutional Neural Networks. Int. J. Disaster Risk Sci. 2023, 14, 475–487. [Google Scholar] [CrossRef]
Sensors | Sentinel-1 | ALOS PALSAR |
---|---|---|
Operating Time | 12 April 2014~Now | 24 January 2006~22 April 2011 |
Frame/Path | 111/142 | 710/447 |
Heading Direction | Ascending | Ascending |
Incidence Angle | 20°~46° | 18°~70° |
Bands | C | L |
Polarization | VV | HH |
Number of Images | 176 | 22 |
Acquisition Time | 30 July 2015~22 August 2022 | 17 January 2007~28 October 2010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, C.; Feng, G.; Zhang, L.; Wang, W. Retrospect on the Ground Deformation Process and Potential Triggering Mechanism of the Traditional Steel Production Base in Laiwu with ALOS PALSAR and Sentinel-1 SAR Sensors. Sensors 2024, 24, 4872. https://doi.org/10.3390/s24154872
Ding C, Feng G, Zhang L, Wang W. Retrospect on the Ground Deformation Process and Potential Triggering Mechanism of the Traditional Steel Production Base in Laiwu with ALOS PALSAR and Sentinel-1 SAR Sensors. Sensors. 2024; 24(15):4872. https://doi.org/10.3390/s24154872
Chicago/Turabian StyleDing, Chao, Guangcai Feng, Lu Zhang, and Wenxin Wang. 2024. "Retrospect on the Ground Deformation Process and Potential Triggering Mechanism of the Traditional Steel Production Base in Laiwu with ALOS PALSAR and Sentinel-1 SAR Sensors" Sensors 24, no. 15: 4872. https://doi.org/10.3390/s24154872