A Super-Resolution and 3D Reconstruction Method Based on OmDF Endoscopic Images
Abstract
:1. Introduction
- (1)
- The Omni Self-Attention (OSA) mechanism, Omni-Scale Aggregation Group (OSAG), Dual-stream Adaptive Focus Mechanism (DAFM), and Dynamic Edge Adjustment Framework (DEAF) are employed to enhance the accuracy and efficiency of super-resolution processing. These technologies significantly improve the model’s effective receptive field and contextual aggregation capabilities, especially when dealing with endoscopic images that feature complex textures and fine edges.
- (2)
- Combining Structure from Motion (SfM) and Multi-View Stereo (MVS) technologies, high-precision medical 3D models are obtained. These techniques accurately reconstruct detailed 3D models, significantly enhancing point cloud density, mesh quality, and the richness of texture mapping.
2. Materials and Methods
2.1. Image Super-Resolution Algorithm
2.1.1. OSA
2.1.2. OSAG
2.1.3. DAFM
2.1.4. DEAF
2.1.5. Reconstruction
2.1.6. OmDF-SR Framework
2.2. 3D Reconstruction Algorithm
2.2.1. Structure from Motion (SfM)
2.2.2. Multi-View Stereo (MVS)
3. Results
3.1. Experimental Settings
3.2. Image Super-Resolution Experiment
3.3. Three-Dimensional Reconstruction Experiment
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Cao, G.; Wang, Y.; Liao, S.; Wang, Q.; Shi, J.; Li, C.; Shen, D. Review and prospect: Artificial intelligence in advanced medical imaging. Front. Radiol. 2021, 1, 781868. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Li, B.; Mo, H.; Lu, B.; Long, Y.; Yang, B.; Dou, Q.; Liu, Y.; Sun, D. Stereo dense scene reconstruction and accurate localization for learning-based navigation of laparoscope in minimally invasive surgery. IEEE Trans. Biomed. Eng. 2022, 70, 488–500. [Google Scholar] [CrossRef] [PubMed]
- Almalioglu, Y.; Ozyoruk, K.B.; Gokce, A.; Incetan, K.; Gokceler, G.I.; Simsek, M.A.; Ararat, K.; Chen, R.J.; Durr, N.J.; Mahmood, F.; et al. EndoL2H: Deep super-resolution for capsule endoscopy. IEEE Trans. Med. Imaging 2020, 39, 4297–4309. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chen, Z.; Li, Q.; Wang, Y.; Zhou, K.; Xie, W.; Fang, Y.; Zheng, K.; Zhao, Z.; Liu, S. MDA-SR: Multi-level Domain Adaptation Super-Resolution for Wireless Capsule Endoscopy Images. In Proceedings of the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, Vancouver, BC, Canada, 8–12 October 2023; pp. 518–527. [Google Scholar] [CrossRef]
- Umirzakova, S.; Mardieva, S.; Muksimova, S.; Ahmad, S.; Whangbo, T. Enhancing the Super-Resolution of Medical Images: Introducing the Deep Residual Feature Distillation Channel Attention Network for Optimized Performance and Efficiency. Bioengineering 2023, 10, 1332. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Li, Y.; Sun, Y.; Zhou, Y.; Wei, H.; Yu, J.; Zhang, Y. An arbitrary scale super-resolution approach for 3D mr images via implicit neural representation. IEEE J. Biomed. Health Inform. 2022, 27, 1004–1015. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Zhao, S.; Hu, Y.; Xie, C. Single-Image Super-Resolution Challenges: A Brief Review. Electronics 2023, 12, 2975. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.K.; Lee, K.M. Deeply-recursive convolutional network for image super-resolution. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645. [Google Scholar]
- Liang, J.; Cao, J.; Sun, G.; Zhang, K.; Van Gool, L.; Timofte, R. Swinir: Image restoration using swin transformer. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 1833–1844. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar]
- Wang, H.; Chen, X.; Ni, B.; Liu, Y.; Liu, J. Omni aggregation networks for lightweight image super-resolution. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 22378–22387. [Google Scholar]
- Schonberger, J.L.; Frahm, J.-M. Structure-from-motion revisited. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113. [Google Scholar]
- Gao, L.; Zhao, Y.; Han, J.; Liu, H. Research on multi-view 3D reconstruction technology based on SFM. Sensors 2022, 22, 4366. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Qv, W.; Cai, H.; Guan, H.; Zhang, S. An efficient and robust hybrid sfm method for large-scale scenes. Remote Sens. 2023, 15, 769. [Google Scholar] [CrossRef]
- Liu, J.; Ji, P.; Bansal, N.; Cai, C.; Yan, Q.; Huang, X.; Xu, Y. Planemvs: 3D plane reconstruction from multi-view stereo. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 8665–8675. [Google Scholar]
- Jia, R.; Chen, X.; Cui, J.; Hu, Z. MVS-T: A coarse-to-fine multi-view stereo network with transformer for low-resolution images 3D reconstruction. Sensors 2022, 22, 7659. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, H. EndoGaussians: Single View Dynamic Gaussian Splatting for Deformable Endoscopic Tissues Reconstruction. arXiv 2024, arXiv:2401.13352. [Google Scholar]
- Batlle, V.M.; Montiel, J.M.; Tardós, J.D. Photometric single-view dense 3D reconstruction in endoscopy. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 4904–4910. [Google Scholar] [CrossRef]
- Ahmad, B.; Floor, P.A.; Farup, I.; Andersen, C.F. Single-Image-Based 3D Reconstruction of Endoscopic Images. J. Imaging 2024, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Bozic, A.; Palafox, P.; Zollhofer, M.; Thies, J.; Dai, A.; Nießner, M. Neural deformation graphs for globally-consistent non-rigid reconstruction. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1450–1459. [Google Scholar]
- Wang, Y.; Long, Y.; Fan, S.H.; Dou, Q. Neural rendering for stereo 3d reconstruction of deformable tissues in robotic surgery. In Proceedings of the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, 18–22 September 2022; pp. 431–441. [Google Scholar] [CrossRef]
- Yu, B.; Chen, W.; Zhong, Q.; Zhang, H. Specular highlight detection based on color distribution for endoscopic images. Front. Phys. 2021, 8, 616930. [Google Scholar] [CrossRef]
- Greenspan, H. Super-resolution in medical imaging. Comput. J. 2009, 52, 43–63. [Google Scholar] [CrossRef]
- Recasens, D.; Lamarca, J.; Fácil, J.M.; Martinez Montiel, J.M.; Civera, J. Endo-depth-and-motion: Reconstruction and tracking in endoscopic videos using depth networks and photometric constraints. IEEE Robot. Autom. Lett. 2021, 6, 7225–7232. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Ahn, N.; Kang, B.; Sohn, K.-A. Fast, accurate, and lightweight super-resolution with cascading residual network. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 252–268. [Google Scholar]
- Wang, L.; Wang, Y.; Liang, Z.; Lin, Z.; Yang, J.; An, W.; Guo, Y. Learning parallax attention for stereo image super-resolution. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12250–12259. [Google Scholar]
- Kong, F.; Li, M.; Liu, S.; Liu, D.; He, J.; Bai, Y.; Chen, F.; Fu, L. Residual local feature network for efficient super-resolution. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 766–776. [Google Scholar]
Method | Scale | PSNR/SSIM |
---|---|---|
VDSR [27] | ×2 | 37.3837/0.9669 |
CARN [28] | ×2 | 37.7601/0.9698 |
PASSR [29] | ×2 | 37.8237/0.9701 |
RLFN [30] | ×2 | 38.1583/0.9722 |
Omni-SR [13] | ×2 | 38.2154/0.9733 |
OmDF-SR | ×2 | 38.2902/0.9746 |
VDSR | ×4 | 31.1783/0.9418 |
CARN | ×4 | 31.6334/0.9438 |
PASSR | ×4 | 31.4625/0.9422 |
RLFN | ×4 | 31.9284/0.9461 |
Omni-SR | ×4 | 32.1052/0.9469 |
OmDF-SR | ×4 | 32.1723/0.9489 |
Parameter | Unprocessed | PASSR | RLFN | Omni-SR | OmDF-SR |
---|---|---|---|---|---|
Vertices | 11,557 | 12,247 | 12,541 | 14,858 | 15,290 |
Faces | 23,110 | 14,832 | 25,027 | 29,763 | 30,547 |
Texture Blocks | 600 | 677 | 693 | 812 | 867 |
Density | 368.01 | 429 | 414 | 483 | 526.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, F.; Song, W. A Super-Resolution and 3D Reconstruction Method Based on OmDF Endoscopic Images. Sensors 2024, 24, 4890. https://doi.org/10.3390/s24154890
Sun F, Song W. A Super-Resolution and 3D Reconstruction Method Based on OmDF Endoscopic Images. Sensors. 2024; 24(15):4890. https://doi.org/10.3390/s24154890
Chicago/Turabian StyleSun, Fujia, and Wenxuan Song. 2024. "A Super-Resolution and 3D Reconstruction Method Based on OmDF Endoscopic Images" Sensors 24, no. 15: 4890. https://doi.org/10.3390/s24154890
APA StyleSun, F., & Song, W. (2024). A Super-Resolution and 3D Reconstruction Method Based on OmDF Endoscopic Images. Sensors, 24(15), 4890. https://doi.org/10.3390/s24154890