Exploring the Potential of a Smart Ring to Predict Postoperative Pain Outcomes in Orthopedic Surgery Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Wearable Device
2.4. Data Collection
2.5. Data Processing and Modeling
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Smart Ring Features
Feature | Source | Feature | Source |
---|---|---|---|
Active calories | Oura Ring | Meters to target | Oura Ring |
Average breath | Oura Ring | Movement 30 s | Oura Ring |
Average heart rate | Oura Ring | Non wear time | Oura Ring |
Average HRV | Oura Ring | Period | Oura Ring |
Average MET minutes | Oura Ring | Readiness contributors body temperature | Oura Ring |
Awake time | Oura Ring | Readiness contributors previous day activity | Oura Ring |
Contributors activity balance | Oura Ring | Readiness contributors previous night | Oura Ring |
Contributors body temperature | Oura Ring | Readiness contributors recovery index | Oura Ring |
Contributors deep sleep | Oura Ring | Readiness score | Oura Ring |
Contributors efficiency | Oura Ring | Readiness temperature deviation | Oura Ring |
Contributors HRV balance | Oura Ring | Readiness temperature trend deviation | Oura Ring |
Contributors latency | Oura Ring | Rem sleep duration | Oura Ring |
Contributors meet daily targets | Oura Ring | Resting time | Oura Ring |
Contributors move every hour | Oura Ring | Restless periods | Oura Ring |
Contributors previous day activity | Oura Ring | Sedentary MET minutes | Oura Ring |
Contributors previous night | Oura Ring | Sedentary time | Oura Ring |
Contributors recovery index | Oura Ring | Sleep midpoint | Oura Ring |
Contributors recovery time | Oura Ring | Steps | Oura Ring |
Contributors REM sleep | Oura Ring | Target calories | Oura Ring |
Contributors restfulness | Oura Ring | Target meters | Oura Ring |
Contributors resting heart rate | Oura Ring | Temperature deviation | Oura Ring |
Contributors sleep balance | Oura Ring | Temperature trend deviation | Oura Ring |
Contributors stay active | Oura Ring | Time in bed | Oura Ring |
Contributors timing | Oura Ring | Total calories | Oura Ring |
Contributors total sleep | Oura Ring | Total sleep duration | Oura Ring |
Contributors training frequency | Oura Ring | Avg METs | Oura Ring |
Contributors training volume | Oura Ring | Max METs | Oura Ring |
Deep sleep duration | Oura Ring | Activity score | Oura Ring |
Efficiency | Oura Ring | Readiness score | Oura Ring |
Equivalent walking distance | Oura Ring | Daily sleep score | Oura Ring |
High activity MET minutes | Oura Ring | Sleep score | Oura Ring |
High activity time | Oura Ring | N med doses | EMR |
Inactivity alerts | Oura Ring | Delta HR | Oura Ring |
Latency | Oura Ring | Delta HRVRR | Oura Ring |
Light sleep duration | Oura Ring | Age | EMR |
Low activity MET minutes | Oura Ring | Weight | EMR |
Low activity time | Oura Ring | Height | EMR |
Lowest heart rate | Oura Ring | Gender female | EMR |
Medium activity MET minutes | Oura Ring | Gender male | EMR |
Medium activity time | Oura Ring | Gender other | EMR |
Appendix A.2. Feature Processing, Imputation, and Selection
Appendix A.3. Modeling
- Logistic regression: L1:L2 ratio, whether or not to apply class weights, whether or not to fit an intercept, and the maximum number of iterations.
- XGBoost: number of estimators, maximum depth, lambda, alpha, eta, and gamma.
Appendix A.4. Results
Appendix A.5. Comparison to Other Models
References
- Arefayne, N.R.; Tegegne, S.S.; Gebregzi, A.H.; Mustofa, S.Y. Incidence and associated factors of post-operative pain after emergency Orthopedic surgery: A multi-centered prospective observational cohort study. Int. J. Surg. Open 2020, 27, 103–113. [Google Scholar] [CrossRef]
- Gan, T.J. Poorly controlled postoperative pain: Prevalence, consequences, and prevention. J. Pain Res. 2017, 10, 2287–2298. [Google Scholar] [CrossRef]
- Hah, J.M.; Bateman, B.T.; Ratliff, J.; Curtin, C.; Sun, E. Chronic opioid use after surgery: Implications for perioperative management in the face of the opioid epidemic. Anesth. Analg. 2017, 125, 1733–1740. [Google Scholar] [CrossRef]
- Chunduri, A.; Aggarwal, A.K. Multimodal pain management in orthopedic surgery. J. Clin. Med. 2022, 11, 6386. [Google Scholar] [CrossRef]
- Buvanendran, A.; Fiala, J.; Patel, K.A.; Golden, A.D.; Moric, M.; Kroin, J.S. The Incidence and Severity of Postoperative Pain following Inpatient Surgery. Pain Med. 2015, 16, 2277–2283. [Google Scholar] [CrossRef]
- Yang, M.M.H.; Hartley, R.L.; Leung, A.A.; Ronksley, P.E.; Jetté, N.; Casha, S.; Riva-Cambrin, J. Preoperative predictors of poor acute postoperative pain control: A systematic review and meta-analysis. BMJ Open 2019, 9, e025091. [Google Scholar] [CrossRef]
- Naranjo-Hernández, D.; Reina-Tosina, J.; Roa, L.M. Sensor technologies to manage the physiological traits of chronic pain: A review. Sensors 2020, 20, 365. [Google Scholar] [CrossRef]
- Browne, J.D.; Boland, D.M.; Baum, J.T.; Ikemiya, K.; Harris, Q.; Phillips, M.; Neufeld, E.V.; Gomez, D.; Goldman, P.; Dolezal, B.A. Lifestyle Modification Using a Wearable Biometric Ring and Guided Feedback Improve Sleep and Exercise Behaviors: A 12-Month Randomized, Placebo-Controlled Study. Front. Physiol. 2021, 12, 777874. [Google Scholar] [CrossRef]
- Mason, A.E.; Hecht, F.M.; Davis, S.K.; Natale, J.L.; Hartogensis, W.; Damaso, N.; Claypool, K.T.; Dilchert, S.; Dasgupta, S.; Purawat, S.; et al. Detection of COVID-19 using multimodal data from a wearable device: Results from the first TemPredict Study. Sci. Rep. 2022, 12, 3463. [Google Scholar] [CrossRef]
- Maijala, A.; Kinnunen, H.; Koskimäki, H.; Jämsä, T.; Kangas, M. Nocturnal finger skin temperature in menstrual cycle tracking: Ambulatory pilot study using a wearable Oura ring. BMC Womens Health 2019, 19, 150. [Google Scholar] [CrossRef]
- Alzueta, E.; de Zambotti, M.; Javitz, H.; Dulai, T.; Albinni, B.; Simon, K.C.; Sattari, N.; Zhang, J.; Shuster, A.; Mednick, S.C.; et al. Tracking Sleep, Temperature, Heart Rate, and Daily Symptoms Across the Menstrual Cycle with the Oura Ring in Healthy Women. Int. J. Womens Health 2022, 14, 491–503. [Google Scholar] [CrossRef]
- Avila, F.R.; McLeod, C.J.; Huayllani, M.T.; Boczar, D.; Giardi, D.; Bruce, C.J.; Carter, R.E.; Forte, A.J. Wearable electronic devices for chronic pain intensity assessment: A systematic review. Pain Pract. 2021, 21, 955–965. [Google Scholar] [CrossRef]
- Vos, G.; Trinh, K.; Sarnyai, Z.; Rahimi Azghadi, M. Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review. Int. J. Med. Inform. 2023, 173, 105026. [Google Scholar] [CrossRef]
- Chen, J.; Abbod, M.; Shieh, J.-S. Pain and Stress Detection Using Wearable Sensors and Devices-A Review. Sensors 2021, 21, 1030. [Google Scholar] [CrossRef]
- Cao, R.; Azimi, I.; Sarhaddi, F.; Niela-Vilen, H.; Axelin, A.; Liljeberg, P.; Rahmani, A.M. Accuracy assessment of oura ring nocturnal heart rate and heart rate variability in comparison with electrocardiography in time and frequency domains: Comprehensive analysis. J. Med. Int. Res. 2022, 24, e27487. [Google Scholar] [CrossRef]
- Kinnunen, H.; Rantanen, A.; Kenttä, T.; Koskimäki, H. Feasible assessment of recovery and cardiovascular health: Accuracy of nocturnal HR and HRV assessed via ring PPG in comparison to medical grade ECG. Physiol. Meas. 2020, 41, 04NT01. [Google Scholar] [CrossRef]
- Forte, G.; Troisi, G.; Pazzaglia, M.; Pascalis, V.D.; Casagrande, M. Heart rate variability and pain: A systematic review. Brain Sci. 2022, 12, 153. [Google Scholar] [CrossRef]
- Bendall, J.C.; Simpson, P.M.; Middleton, P.M. Prehospital vital signs can predict pain severity: Analysis using ordinal logistic regression. Eur. J. Emerg. Med. 2011, 18, 334–339. [Google Scholar] [CrossRef]
- Kristiansson, E.; Fridolfsson, J.; Arvidsson, D.; Holmäng, A.; Börjesson, M.; Andersson-Hall, U. Validation of Oura ring energy expenditure and steps in laboratory and free-living. BMC Med. Res. Methodol. 2023, 23, 50. [Google Scholar] [CrossRef]
- O’Brien, E.M.; Waxenberg, L.B.; Atchison, J.W.; Gremillion, H.A.; Staud, R.M.; McCrae, C.S.; Robinson, M.E. Intraindividual variability in daily sleep and pain ratings among chronic pain patients: Bidirectional association and the role of negative mood. Clin. J. Pain 2011, 27, 425–433. [Google Scholar] [CrossRef]
- Orbach-Zinger, S.; Fireman, S.; Ben-Haroush, A.; Karoush, T.; Klein, Z.; Mazarib, N.; Artyukh, A.; Chen, R.; Ioscovich, A.; Eidelman, L.A.; et al. Preoperative sleep quality predicts postoperative pain after planned caesarean delivery. Eur. J. Pain 2017, 21, 787–794. [Google Scholar] [CrossRef]
- Asgari Mehrabadi, M.; Azimi, I.; Sarhaddi, F.; Axelin, A.; Niela-Vilén, H.; Myllyntausta, S.; Stenholm, S.; Dutt, N.; Liljeberg, P.; Rahmani, A.M. Sleep Tracking of a Commercially Available Smart Ring and Smartwatch Against Medical-Grade Actigraphy in Everyday Settings: Instrument Validation Study. JMIR Mhealth Uhealth 2020, 8, e20465. [Google Scholar] [CrossRef]
- Pouromran, F.; Radhakrishnan, S.; Kamarthi, S. Exploration of physiological sensors, features, and machine learning models for pain intensity estimation. PLoS ONE 2021, 16, e0254108. [Google Scholar] [CrossRef]
- Nagireddi, J.N.; Vyas, A.K.; Sanapati, M.R.; Soin, A.; Manchikanti, L. The Analysis of Pain Research through the Lens of Artificial Intelligence and Machine Learning. Pain Phys. 2022, 25, E211–E243. [Google Scholar]
- Gullapalli, B.T.; Carreiro, S.; Chapman, B.P.; Ganesan, D.; Sjoquist, J.; Rahman, T. OpiTrack: A Wearable-based Clinical Opioid Use Tracker with Temporal Convolutional Attention Networks. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–29. [Google Scholar] [CrossRef]
- Cremeans-Smith, J.K.; Greene, K.; Delahanty, D.L. Physiological Indices of Stress Prior to and Following Total Knee Arthroplasty Predict the Occurrence of Severe Post-Operative Pain. Pain Med. 2016, 17, 970–979. [Google Scholar] [CrossRef]
- Svensson, T.; Madhawa, K.; Nt, H.; Chung, U.-I.; Svensson, A.K. Validity and reliability of the Oura Ring Generation 3 (Gen3) with Oura sleep staging algorithm 2.0 (OSSA 2.0) when compared to multi-night ambulatory polysomnography: A validation study of 96 participants and 421,045 epochs. Sleep Med. 2024, 115, 251–263. [Google Scholar] [CrossRef]
- Oura Ring Gen 3 Information Leaflet. Available online: https://support.ouraring.com/hc/en-us/articles/4412081024147-User-Guides (accessed on 22 July 2024).
- Marmor, M.T.; Mahadevan, V.; Solans, B.P.; Floren, A.; Jarlsberg, L.; Cohen, I.; Savic, R. Inpatient pain alleviation after orthopaedic trauma surgery-are we doing a good job? Eur. J. Orthop. Surg. Traumatol. 2024, 34, 569–576. [Google Scholar] [CrossRef]
- Han, Y.; Huang, L.; Zhou, F. A dynamic recursive feature elimination framework (dRFE) to further refine a set of OMIC biomarkers. Bioinformatics 2021, 37, 2183–2189. [Google Scholar] [CrossRef]
- Bloch, L.; Friedrich, C.M. Alzheimer’s Disease Neuroimaging Initiative Data analysis with Shapley values for automatic subject selection in Alzheimer’s disease data sets using interpretable machine learning. Alzheimers Res. Ther. 2021, 13, 155. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquanx, G.; Gramfort, A.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD’16, San Francisco, CA, USA, 13–17 August 2016; ACM Press: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4765–4774. [Google Scholar]
- Rakel, B.A.; Blodgett, N.P.; Zimmerman, B.M.; Logsden-Sackett, N.; Clark, C.; Noiseux, N.; Callaghan, J.; Herr, K.; Geasland, K.; Yang, X.; et al. Predictors of postoperative movement and resting pain following total knee replacement. Pain 2012, 153, 2192–2203. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Buvanendran, A.; Rathmell, J.P.; Sawhney, M.; Bae, J.J.; Moric, M.; Perros, S.; Pope, A.J.; Poultsides, L.; Della Valle, C.J.; et al. Predictors for moderate to severe acute postoperative pain after total hip and knee replacement. Int. Orthop. 2012, 36, 2261–2267. [Google Scholar] [CrossRef] [PubMed]
- Dzakpasu, F.Q.S.; Carver, A.; Brakenridge, C.J.; Cicuttini, F.; Urquhart, D.M.; Owen, N.; Dunstan, D.W. Musculoskeletal pain and sedentary behaviour in occupational and non-occupational settings: A systematic review with meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 159. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.W.; Smeets, R.J. Interaction between pain, movement, and physical activity: Short-term benefits, long-term consequences, and targets for treatment. Clin. J. Pain 2015, 31, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Holland-Fischer, P.; Greisen, J.; Grøfte, T.; Jensen, T.S.; Hansen, P.O.; Vilstrup, H. Increased energy expenditure and glucose oxidation during acute nontraumatic skin pain in humans. Eur. J. Anaesthesiol. 2009, 26, 311–317. [Google Scholar] [CrossRef]
- Roche, D.; Mahon, P. Depth of anesthesia monitoring. Anesthesiol. Clin. 2021, 39, 477–492. [Google Scholar] [CrossRef]
All Patients | Train Dataset | Test Dataset | |
---|---|---|---|
Patients, n | 45 | 27 | 10 |
PPA per patient, n (%) | 20 (44) | 13 (48) | 7 (70) |
Sex, female, n (%) | 24 (53) | 12 (44) | 5 (50) |
Age, year | |||
Median | 59 | 59 | 58 |
IQR | 54–65 | 54–64 | 55–66 |
Range | 28–82 | 28–78 | 51–82 |
Body weight, kg | |||
Median | 86 | 80 | 100 |
IQR | 68–110 | 66–110 | 76–120 |
Range | 38–179 | 38–175 | 58–179 |
BMI, kg/m2 | |||
Median | 30.6 | 28.7 | 36.5 |
IQR | 25.5–36.7 | 24.9–35.5 | 30.0–37.7 |
Range | 11.4–75.7 | 11.4–75.7 | 23.9–49.6 |
ASA physical status score | |||
Median | 3 | 3 | 3 |
IQR | 2.0–3.0 | 2.0–3.0 | 3.0–3.0 |
Range | 1.0–3.0 | 1.0–3.0 | 2.0–3.0 |
Comorbidities, n (%) | 32 (71) | 22 (81) | 5 (50) |
Depression or anxiety, n (%) | 15 (33) | 7 (26) | 4 (40) |
Smoker, n (%) | 10 (22) | 5 (19) | 3 (30) |
Previous opioid use, n (%) | 36 (80) | 22 (81) | 10 (100) |
Baseline pain score | |||
Median | 5.5 | 7 | 0 |
IQR | 0.0–8.0 | 0.0–8.0 | 0.0–6.5 |
Range | 0.0–10.0 | 0.0–10.0 | 0.0–10.0 |
Model Details | Model Performance | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pt 1–35 Training Dataset * | Pt 36–45 Testing Dataset (Daily PPA) | Pt 36–45 Testing Dataset (Aggregated Per-Patient PPA) | |||||||||
Structure | Feature Selection Method | Number of Features | Accuracy | F1-Score | AUC ROC | Accuracy | F1-Score | AUC ROC | Accuracy | F1-Score | AUC ROC |
Logistic regression | RFE | 28 | 0.715 | 0.567 | 0.761 | 0.552 | 0.316 | 0.534 | 0.400 | 0.250 | 0.667 |
Logistic regression | SHAP | 18 | 0.720 | 0.623 | 0.840 | 0.552 | 0.316 | 0.486 | 0.500 | 0.444 | 0.429 |
Logistic regression | Brute force | 4 | 0.757 | 0.483 | 0.740 | 0.483 | 0.118 | 0.203 | 0.300 | 0.222 | 0.143 |
Logistic regression | Brute force | 5 | 0.785 | 0.642 | 0.740 | 0.517 | 0.125 | 0.203 | 0.400 | 0.250 | 0.143 |
Logistic regression | Brute force | 6 | 0.785 | 0.642 | 0.745 | 0.517 | 0.125 | 0.203 | 0.400 | 0.250 | 0.143 |
Logistic regression | Brute force | 7 | 0.795 | 0.622 | 0.783 | 0.517 | 0.461 | 0.534 | 0.700 | 0.769 | 0.571 |
Logistic regression | Brute force | 8 | 0.788 | 0.631 | 0.780 | 0.517 | 0.300 | 0.593 | 0.500 | 0.545 | 0.524 |
Logistic regression | Brute force | 9 | 0.802 | 0.625 | 0.757 | 0.586 | 0.538 | 0.612 | 0.700 | 0.769 | 0.762 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morimoto, M.; Nawari, A.; Savic, R.; Marmor, M. Exploring the Potential of a Smart Ring to Predict Postoperative Pain Outcomes in Orthopedic Surgery Patients. Sensors 2024, 24, 5024. https://doi.org/10.3390/s24155024
Morimoto M, Nawari A, Savic R, Marmor M. Exploring the Potential of a Smart Ring to Predict Postoperative Pain Outcomes in Orthopedic Surgery Patients. Sensors. 2024; 24(15):5024. https://doi.org/10.3390/s24155024
Chicago/Turabian StyleMorimoto, Michael, Ashraf Nawari, Rada Savic, and Meir Marmor. 2024. "Exploring the Potential of a Smart Ring to Predict Postoperative Pain Outcomes in Orthopedic Surgery Patients" Sensors 24, no. 15: 5024. https://doi.org/10.3390/s24155024
APA StyleMorimoto, M., Nawari, A., Savic, R., & Marmor, M. (2024). Exploring the Potential of a Smart Ring to Predict Postoperative Pain Outcomes in Orthopedic Surgery Patients. Sensors, 24(15), 5024. https://doi.org/10.3390/s24155024