A Low-Cost Handheld Centrifugal Microfluidic System for Multiplexed Visual Detection Based on Isothermal Amplification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Centrifugal Microfluidic Chip
2.2. Handheld Companion Device
2.3. Chip Positioning Based on Magnetic Sensing and Locking
2.4. Visual Detection
3. Results and Discussion
3.1. Optimization of Visual Detection with Improved Performance and Limited Cost
3.2. Multiplexed ASFV Detection with the Handheld Centrifugal Microfluidic System
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, S.; Wu, J.; Dai, H.; Gao, R.; Lin, H.; Zhang, D.; Ge, S. Development of Amplification System for Point-of-Care Test of Nucleic Acid. Comput. Methods Biomech. Biomed. Eng. 2022, 25, 961–970. [Google Scholar] [CrossRef]
- Kim, B.K.; Lee, S.-A.; Park, M.; Jeon, E.J.; Kim, M.J.; Kim, J.M.; Kim, H.; Jung, S.; Kim, S.K. Ultrafast Real-Time PCR in Photothermal Microparticles. ACS Nano 2022, 16, 20533–20544. [Google Scholar] [CrossRef]
- Bao, M.; Chen, Q.; Xu, Z.; Jensen, E.C.; Liu, C.; Waitkus, J.T.; Yuan, X.; He, Q.; Qin, P.; Du, K. Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing. ACS Sens. 2021, 6, 2497–2522. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, T.; Xie, Y.-N.; Li, F.; Jiang, X.; Hou, X.; Wu, P. Recombinase Polymerase Amplification Coupled with a Photosensitization Colorimetric Assay for Fast Salmonella Spp. Testing. Anal. Chem. 2021, 93, 6559–6566. [Google Scholar] [CrossRef]
- Dong, X.; Tang, Z.; Jiang, X.; Fu, Q.; Xu, D.; Zhang, L.; Qiu, X. A Highly Sensitive, Real-Time Centrifugal Microfluidic Chip for Multiplexed Detection Based on Isothermal Amplification. Talanta 2024, 268, 125319. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Lin, L.; Wu, T.; Zhao, Z.; Ying, B.; Chang, L. A Finger-Driven Disposable Micro-Platform Based on Isothermal Amplification for the Application of Multiplexed and Point-of-Care Diagnosis of Tuberculosis. Biosens. Bioelectron. 2022, 195, 113663. [Google Scholar] [CrossRef]
- Seo, J.H.; Park, B.H.; Oh, S.J.; Choi, G.; Kim, D.H.; Lee, E.Y.; Seo, T.S. Development of a High-Throughput Centrifugal Loop-Mediated Isothermal Amplification Microdevice for Multiplex Foodborne Pathogenic Bacteria Detection. Sens. Actuators B Chem. 2017, 246, 146–153. [Google Scholar] [CrossRef]
- Lim, J.; Stavins, R.; Kindratenko, V.; Baek, J.; Wang, L.; White, K.; Kumar, J.; Valera, E.; King, W.P.; Bashir, R. Microfluidic Point-of-Care Device for Detection of Early Strains and B.1.1.7 Variant of SARS-CoV-2 Virus. Lab Chip 2022, 22, 1297–1309. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, Y.; Chen, C.; Sheng, T.; Liu, P.; Zhang, G. A Smartphone-Assisted Microfluidic Chemistry Analyzer Using Image-Based Colorimetric Assays for Multi-Index Monitoring of Diabetes and Hyperlipidemia. Anal. Chim. Acta 2019, 1052, 105–112. [Google Scholar] [CrossRef]
- Su, W.; Liang, D.; Tan, M. Nucleic Acid-Based Detection for Foodborne Virus Utilizing Microfluidic Systems. Trends Food Sci. Technol. 2021, 113, 97–109. [Google Scholar] [CrossRef]
- Song, K.-Y.; Hwang, H.J.; Kim, J.H. Ultra-Fast DNA-Based Multiplex Convection PCR Method for Meat Species Identification with Possible on-Site Applications. Food Chem. 2017, 229, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Duan, L.; Fu, J.; Chai, F.; Zhou, Q.; Wang, Y.; Shao, X.; Wang, L.; Yan, M.; Su, X.; et al. A Real-Time LAMP-Based Dual-Sample Microfluidic Chip for Rapid and Simultaneous Detection of Multiple Waterborne Pathogenic Bacteria from Coastal Waters. Anal. Methods 2021, 13, 2710–2721. [Google Scholar] [CrossRef] [PubMed]
- Woo, A.; Jung, H.S.; Kim, D.-H.; Park, S.-G.; Lee, M.-Y. Rapid and Sensitive Multiplex Molecular Diagnosis of Respiratory Pathogens Using Plasmonic Isothermal RPA Array Chip. Biosens. Bioelectron. 2021, 182, 113167. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Qi, W.; Wu, S.; Yuan, J.; Duan, H.; Li, Y.; Lin, J. An Automatic Centrifugal System for Rapid Detection of Bacteria Based on Immunomagnetic Separation and Recombinase Aided Amplification. Lab Chip 2022, 22, 3780–3789. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shen, H.; Yang, X.; Kang, S.; Cai, L.; Tian, T.; Su, R.; Yang, C.; Zhu, Z. Recent Progress in Microfluidic Biosensors with Different Driving Forces. TrAC Trends Anal. Chem. 2023, 158, 116894. [Google Scholar] [CrossRef]
- Mao, Z.; Deng, A.; Jin, X.; Li, M.; Lv, W.; Huang, L.; Zhong, H.; Yang, H.; Wang, S.; Shi, Y.; et al. A Microfluidic-Chip-Based System with Loop-Mediated Isothermal Amplification for Rapid and Parallel Detection of Trichomonas Vaginalis and Human Papillomavirus. Analyst 2023, 148, 4820–4828. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Duan, L.; Jin, D.; Chen, Y.; Lou, Y.; Zhou, Q.; Xu, Z.; Chen, F.; Chen, H.; Xu, G.; et al. A Real-Time Fluorogenic Recombinase Polymerase Amplification Microfluidic Chip (on-Chip RPA) for Multiple Detection of Pathogenic Microorganisms of Penaeid Shrimp. Aquaculture 2024, 578, 740017. [Google Scholar] [CrossRef]
- Li, R.; Su, N.; Ren, X.; Sun, X.; Li, W.; Li, Y.; Li, J.; Chen, C.; Wang, H.; Lu, W.; et al. Centrifugal Microfluidic-Based Multiplex Recombinase Polymerase Amplification Assay for Rapid Detection of SARS-CoV-2. iScience 2023, 26, 106245. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Chen, W.Q.; Guo, J.L.; Peng, C.; Chen, X.Y.; Xu, X.L.; Wei, W.; Yang, L.; Ca, J.; Xu, J.F. A Fast, Visual, and Instrument-Free Platform Involving Rapid DNA Extraction, Chemical Heating, and Recombinase Aided Amplification for On-Site Nucleic Acid Detection. Front. Bioeng. Biotechnol. 2021, 9, 764306. [Google Scholar] [CrossRef]
- Oh, S.J.; Park, B.H.; Jung, J.H.; Choi, G.; Lee, D.C.; Kim, D.H.; Seo, T.S. Centrifugal Loop-Mediated Isothermal Amplification Microdevice for Rapid, Multiplex and Colorimetric Foodborne Pathogen Detection. Biosens. Bioelectron. 2016, 75, 293–300. [Google Scholar] [CrossRef]
- Wei, J.; Wang, W.; Yu, Q.; Zhang, M.; Xue, F.; Fan, B.; Zhang, T.; Gao, Y.; Li, J.; Meng, X.; et al. MASTR Pouch: Palm-Size Lab for Point-of-Care Detection of Mpox Using Recombinase Polymerase Amplification and CRISPR Technology. Sens. Actuators B Chem. 2023, 390, 133950. [Google Scholar] [CrossRef]
- Jagannath, A.; Cong, H.; Hassan, J.; Gonzalez, G.; Gilchrist, M.D.; Zhang, N. Pathogen Detection on Microfluidic Platforms: Recent Advances, Challenges, and Prospects. Biosens. Bioelectron. X 2022, 10, 100134. [Google Scholar] [CrossRef]
- Hassanpour-Tamrin, S.; Sanati-Nezhad, A.; Sen, A. A Simple and Low-Cost Approach for Irreversible Bonding of Polymethylmethacrylate and Polydimethylsiloxane at Room Temperature for High-Pressure Hybrid Microfluidics. Sci. Rep. 2021, 11, 4821. [Google Scholar] [CrossRef] [PubMed]
- Lobato, I.M.; O’Sullivan, C.K. Recombinase Polymerase Amplification: Basics, Applications and Recent Advances. Trends Anal. Chem. 2018, 98, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Ceruti, A.; Kobialka, R.M.; Ssekitoleko, J.; Okuni, J.B.; Blome, S.; Abd El Wahed, A.; Truyen, U. Rapid Extraction and Detection of African Swine Fever Virus DNA Based on Isothermal Recombinase Polymerase Amplification Assay. Viruses 2021, 13, 1731. [Google Scholar] [CrossRef]
- Fan, X.; Li, L.; Zhao, Y.; Liu, Y.; Liu, C.; Wang, Q.; Dong, Y.; Wang, S.; Chi, T.; Song, F.; et al. Clinical Validation of Two Recombinase-Based Isothermal Amplification Assays (RPA/RAA) for the Rapid Detection of African Swine Fever Virus. Front. Microbiol. 2020, 11, 1696. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Dong, X.; Zhou, Y.; Zhu, R.; Liu, L.; Zhang, L.; Qiu, X. A Low-Cost Handheld Centrifugal Microfluidic System for Multiplexed Visual Detection Based on Isothermal Amplification. Sensors 2024, 24, 5028. https://doi.org/10.3390/s24155028
Wang N, Dong X, Zhou Y, Zhu R, Liu L, Zhang L, Qiu X. A Low-Cost Handheld Centrifugal Microfluidic System for Multiplexed Visual Detection Based on Isothermal Amplification. Sensors. 2024; 24(15):5028. https://doi.org/10.3390/s24155028
Chicago/Turabian StyleWang, Nan, Xiaobin Dong, Yijie Zhou, Rui Zhu, Luyao Liu, Lulu Zhang, and Xianbo Qiu. 2024. "A Low-Cost Handheld Centrifugal Microfluidic System for Multiplexed Visual Detection Based on Isothermal Amplification" Sensors 24, no. 15: 5028. https://doi.org/10.3390/s24155028
APA StyleWang, N., Dong, X., Zhou, Y., Zhu, R., Liu, L., Zhang, L., & Qiu, X. (2024). A Low-Cost Handheld Centrifugal Microfluidic System for Multiplexed Visual Detection Based on Isothermal Amplification. Sensors, 24(15), 5028. https://doi.org/10.3390/s24155028