MSSFNet: A Multiscale Spatial–Spectral Fusion Network for Extracting Offshore Floating Raft Aquaculture Areas in Multispectral Remote Sensing Images
Abstract
:1. Introduction
- To improve the accuracy of FRA region extraction in multispectral images, we designed a new semantic segmentation model, MSSFNet, on the basis of an encoder–decoder structure. In the encoder part of the network, we develop a spatial–spectral feature extraction block (SSFEB), which improves the defect concerning the underutilization of spectral information in the traditional convolutional method and efficiently fuses spectral features and spatial information to improve the accuracy of FRA region recognition.
- In MSSFNet, we designed a multiscale spatial attention block (MSAB). This block implements a global receptive field and multiscale feature learning, which enhances the adaptability of the network to complex backgrounds, makes the FRA region extraction process more accurate and robust, and improves the ability of the model to identify and segment the target region in complex RSIs.
- We construct the CHN-YE7-FRA dataset for FRA extraction on the basis of Sentinel-2 multispectral remote sensing images, which solves the current problem of missing sample data for offshore FRA area extraction. The dataset accounts for the differences in depth, color, and shape of aquaculture areas in different Chinese seas, annotates representative FRA areas in multiple seas, enhances intraclass diversity, and provides important support for future FRA extraction studies under different environments and conditions.
2. Materials
2.1. Study Areas
2.2. Dataset and Data Processing
3. Methodology
3.1. Overall MSSFNet Architecture
3.2. Spatial–Spectral Feature Extraction Block
3.3. Multiscale Spatial Attention Block
3.4. Implementation Details
3.5. Evaluation Metrics
4. Results
4.1. Comparative Experiments
4.2. Ablation Study
5. Discussion
5.1. Application of the Model
5.2. Advantages and Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FRA | floating raft aquaculture |
GEE | Google Earth Engine |
RSIs | remote sensing images |
SSFEB | spatial–spectral feature extraction block |
MSAB | multiscale spatial attention block |
MSSFNet | multiscale spatial–spectral fusion network |
CNNs | convolutional neural networks |
DC | dilated convolution |
ViT | Vision Transformer |
References
- Chen, P.; Shu, L.; Yuan, H.; Feng, X.; Tong, F.; Chen, Q.; Chen, Y.; Yu, J.; Chen, G.; Yu, J.; et al. Overview of the development process and definition classification of marine pasture at home and abroad. J. Fish. China 2019, 43, 1851–1869. [Google Scholar]
- Wang, K.; Li, N.; Wang, Z.; Song, G.; Du, J.; Song, L.; Jiang, H.; Wu, J. The Impact of Floating Raft Aquaculture on the Hydrodynamic Environment of an Open Sea Area in Liaoning Province, China. Water 2022, 14, 3125. [Google Scholar] [CrossRef]
- Liu, J.; Xia, J.; Zhuang, M.; Zhang, J.; Yu, K.; Zhao, S.; Sun, Y.; Tong, Y.; Xia, L.; Qin, Y.; et al. Controlling the source of green tides in the Yellow Sea: NaClO treatment of Ulva attached on Pyropia aquaculture rafts. Aquaculture 2021, 535, 736378. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.; Liu, Y.; Lu, C. Extraction of coastal raft cultivation area with heterogeneous water background by thresholding object-based visually salient NDVI from high spatial resolution imagery. Remote Sens. Lett. 2018, 9, 839–846. [Google Scholar] [CrossRef]
- Wei, B.; Zhao, J.; Li, Y.; Suo, A. Extraction of raft cultivation of remotely sensed high-spatial-resolution images based on LBV and wavelet transforms. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Beijing, China, 18–20 November 2019; Volume 502, p. 012028. [Google Scholar]
- Wang, J.; Sui, L.; Yang, X.; Wang, Z.; Liu, Y.; Kang, J.; Lu, C.; Yang, F.; Liu, B. Extracting coastal raft aquaculture data from landsat 8 OLI imagery. Sensors 2019, 19, 1221. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Cui, Q.; Wang, J.; Ming, D.; Lv, G. Raft cultivation area extraction from high resolution remote sensing imagery by fusing multi-scale region-line primitive association features. ISPRS J. Photogramm. Remote Sens. 2017, 123, 104–113. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Yang, X.; Zhang, Y.; Yang, F.; Liu, B.; Cai, P. Satellite-based monitoring and statistics for raft and cage aquaculture in China’s offshore waters. Int. J. Appl. Earth Observ. Geoinf. 2020, 91, 102118. [Google Scholar]
- Zhou, X.; Wang, X.; Xiang, T.; Jiang, H. Method of automatic extracting seaside aquaculture land based on ASTER remote sensing image. Wetl. Sci 2006, 4, 64–68. [Google Scholar]
- Hou, T.; Sun, W.; Chen, C.; Yang, G.; Meng, X.; Peng, J. Marine floating raft aquaculture extraction of hyperspectral remote sensing images based decision tree algorithm. Int. J. Appl. Earth Observ. Geoinf. 2022, 111, 102846. [Google Scholar] [CrossRef]
- Fan, J.; Zhao, J.; An, W.; Hu, Y. Marine floating raft aquaculture detection of GF-3 PolSAR images based on collective multikernel fuzzy clustering. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 2741–2754. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, W.; Lu, L. Remote Sensing Mapping of Cage and Floating-raft Aquaculture in China’s Offshore Waters Using Machine Learning Methods and Google Earth Engine. In Proceedings of the 2021 9th International Conference on Agro-Geoinformatics, Shenzhen, China, 26–29 July 2021; pp. 1–5. [Google Scholar]
- Chen, Y.; He, G.; Yin, R.; Zheng, K.; Wang, G. Comparative study of marine ranching recognition in multi-temporal high-resolution remote sensing images based on DeepLab-v3+ and U-Net. Remote Sens. 2022, 14, 5654. [Google Scholar] [CrossRef]
- Ai, B.; Xiao, H.; Xu, H.; Yuan, F.; Ling, M. Coastal aquaculture area extraction based on self-attention mechanism and auxiliary loss. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 2250–2261. [Google Scholar] [CrossRef]
- Cheng, B.; Liang, C.; Liu, X.; Liu, Y.; Ma, X.; Wang, G. Research on a novel extraction method using Deep Learning based on GF-2 images for aquaculture areas. Int. J. Remote Sens. 2020, 41, 3575–3591. [Google Scholar] [CrossRef]
- Lim, S.L.; Sreevalsan-Nair, J.; Daya Sagar, B. Multispectral data mining: A focus on remote sensing satellite images. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2024, 14, e1522. [Google Scholar] [CrossRef]
- Tao, C.; Meng, Y.; Li, J.; Yang, B.; Hu, F.; Li, Y.; Cui, C.; Zhang, W. MSNet: Multispectral semantic segmentation network for remote sensing images. GISci. Remote Sens. 2022, 59, 1177–1198. [Google Scholar] [CrossRef]
- Su, H.; Wei, S.; Qiu, J.; Wu, W. RaftNet: A new deep neural network for coastal raft aquaculture extraction from Landsat 8 OLI data. Remote Sens. 2022, 14, 4587. [Google Scholar] [CrossRef]
- Lu, Y.; Shao, W.; Sun, J. Extraction of offshore aquaculture areas from medium-resolution remote sensing images based on deep learning. Remote Sens. 2021, 13, 3854. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y.; Guo, X.; Ke, W. A Deep Learning Method for Offshore Raft Aquaculture Extraction Based on Medium Resolution Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 6296–6309. [Google Scholar] [CrossRef]
- Chen, H.; He, Y.; Zhang, L.; Yao, S.; Yang, W.; Fang, Y.; Liu, Y.; Gao, B. A landslide extraction method of channel attention mechanism U-Net network based on Sentinel-2A remote sensing images. Int. J. Digit. Earth 2023, 16, 552–577. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Zhang, J.; Chen, S. MLKAF-Net: Multi-Scale Large Kernel Attention Network for Hyperspectral and Multispectral Image Fusion. IEEE Geosci. Remote Sens. Lett. 2023, 21, 5000805. [Google Scholar] [CrossRef]
- Ni, Y.; Liu, J.; Chi, W.; Wang, X.; Li, D. CGGLNet: Semantic Segmentation Network for Remote Sensing Images Based on Category-Guided Global-Local Feature Interaction. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5615617. [Google Scholar] [CrossRef]
- Song, W.; Zhou, X.; Zhang, S.; Wu, Y.; Zhang, P. GLF-Net: A Semantic Segmentation Model Fusing Global and Local Features for High-Resolution Remote Sensing Images. Remote Sens. 2023, 15, 4649. [Google Scholar] [CrossRef]
- Yu, F.; Koltun, V.; Funkhouser, T. Dilated residual networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 472–480. [Google Scholar]
- Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Zhao, X.; Wang, L.; Zhang, Y.; Han, X.; Deveci, M.; Parmar, M. A review of convolutional neural networks in computer vision. Artif Intell. Rev. 2024, 57, 99. [Google Scholar] [CrossRef]
- Cong, S.; Zhou, Y. A review of convolutional neural network architectures and their optimizations. Artif Intell. Rev. 2023, 56, 1905–1969. [Google Scholar] [CrossRef]
- Mehta, S.; Rastegari, M. Mobilevit: Light-weight, general-purpose, and mobile-friendly vision transformer. arXiv 2021, arXiv:2110.02178. [Google Scholar]
- Cai, H.; Li, J.; Hu, M.; Gan, C.; Han, S. Efficientvit: Lightweight multi-scale attention for high-resolution dense prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 17302–17313. [Google Scholar]
- Hu, J.; Huang, M.; Yu, H.; Li, Q. Research on extraction method of offshore aquaculture area based on Sentinel-2 remote sensing imagery. Mar. Environ. Sci 2022, 41, 619–627. [Google Scholar]
- Liu, Z.; Chen, Y.; Yang, B.; Dai, H.; Zhou, Q. Community structure of zooplankton in Zhaoan Bay and adjacent waters. J. Appl. Oceanogr. 2020, 39, 359–367. [Google Scholar]
- Kang, J.; Sui, L.; Yang, X.; Liu, Y.; Wang, Z.; Wang, J.; Yang, F.; Liu, B.; Ma, Y. Sea surface-visible aquaculture spatial-temporal distribution remote sensing: A case study in Liaoning province, China from 2000 to 2018. Sustainability 2019, 11, 7186. [Google Scholar] [CrossRef]
- Liu, P.; Song, H.; Fu, M.; Wang, X.; Zhang, X.; Pu, X. Seasonal distribution characteristics of zooplankton community in the adjacent waters of Rongcheng Bay. J. Ocean. Version 2013, 35, 168–175. [Google Scholar]
- Ai, B.; Wang, P.; Yang, Z.; Tian, Y.; Liu, D. Spatiotemporal dynamics analysis of aquaculture zones and its impact on green tide disaster in Haizhou Bay, China. Mar. Environ. Res. 2023, 183, 105825. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Qin, B.; Pan, H. Study on the utilization di rection of reclamation project in Dayuwan, Cangnan County. Zhejiang Water Conserv. Technol. 2008, 2, 45–47. [Google Scholar]
- Han, A.; Kao, S.J.; Lin, W.; Lin, Q.; Han, L.; Zou, W.; Tan, E.; Lai, Y.; Ding, G.; Lin, H. Nutrient budget and biogeochemical dynamics in Sansha Bay, China: A coastal bay affected by intensive mariculture. J. Geophys. Res. G Biogeosci. 2021, 126, e2020JG006220. [Google Scholar] [CrossRef]
- Bergsma, E.W.; Almar, R. Coastal coverage of ESA’Sentinel 2 mission. Adv. Space Res. 2020, 65, 2636–2644. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings Part III 18. Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Shen, W.; Wang, J.; Chen, M.; Hao, L.; Wu, Z. Research on Bathymetric Inversion Capability of Different Multispectral Remote Sensing Images in Seaports. Sensors 2023, 23, 1178. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, W.; Wang, J.; Zhang, M.; Tao, R. Relationship Learning from Multisource Images via Spatial-spectral Perception Network. IEEE Trans. Image Proc. 2024, 33, 3271–3284. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, J.; Li, T.; Qi, Y.; Wu, Y.; Zhang, Y. A lightweight object detection and recognition method based on light global-local module for remote sensing images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 6007105. [Google Scholar] [CrossRef]
- Katharopoulos, A.; Vyas, A.; Pappas, N.; Fleuret, F. Transformers are rnns: Fast autoregressive transformers with linear attention. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 5156–5165. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Ruby, U.; Yendapalli, V. Binary cross entropy with deep learning technique for image classification. Int. J. Adv. Trends Comput. Sci. Eng 2020, 9, 5393–5397. [Google Scholar]
- Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, 14 September 2017; Proceedings 3. Springer: Cham, Switzerland, 2017; pp. 240–248. [Google Scholar]
- Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983. [Google Scholar]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 2019, 39, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3349–3364. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image segmentation. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 205–218. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Fu, Y.; Zhang, W.; Bi, X.; Wang, P.; Gao, F. TCNet: A Transformer–CNN Hybrid Network for Marine Aquaculture Mapping from VHSR Images. Remote Sens. 2023, 15, 4406. [Google Scholar] [CrossRef]
- Wang, L.; Li, R.; Zhang, C.; Fang, S.; Duan, C.; Meng, X.; Atkinson, P.M. UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS J. Photogramm. Remote Sens. 2022, 190, 196–214. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Liu, J.; Zhou, C.; Chen, P.; Kang, C. An efficient contrast enhancement method for remote sensing images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1715–1719. [Google Scholar] [CrossRef]
- Geng, X.; Jiao, L.; Li, L.; Liu, F.; Liu, X.; Yang, S.; Zhang, X. Multisource joint representation learning fusion classification for remote sensing images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4406414. [Google Scholar] [CrossRef]
Areas | Image Size | Geographical Scope | Coverage Area (km2) | Image Dates |
---|---|---|---|---|
Changhai County | 4450 × 2476 | 122°29′ E,
39°13′ N ∼122°82′ E, 39°35′ N | 110.18 | 1 December 2022 and 25 January 2023 |
Jinshitan Bay | 5879 × 238 | 121°90′ E,
38°93′ N ∼122°30′ E, 39°15′ N | 140.33 | 1 December 2022 and 25 January 2023 |
Rongcheng Bay | 3181 × 5927 | 122°45′ E,
36°87′ N ∼122° 73′ E, 37°41′ N | 188.54 | 1 December 2022 and 25 January 2023 |
Haizhou Bay | 4096 × 3568 | 119°22′ E,
34°75′ N ∼119°59′ E, 35°7′ N | 146.15 | 5 December 2022 and 20 January 2023 |
Dayu Bay | 1065 × 902 | 120°52′ E,
27°32′ N ∼120°62′ E, 27°40′ N | 9.61 | 20 December 2022 and 25 January 2023 |
Sansha Bay | 6101 × 4092 | 119°59′ E,
26°50′ N ∼120°14′ E, 26°86′ N | 249.65 | 21 December 2022 and 25 January 2023 |
Zhaoan Bay | 1239 × 2121 | 117°25′ E,
23°55′ N ∼117°36′ E, 23°74′ N | 26.28 | 5 December 2022 and 25 January 2023 |
Method | F1 (%) | IoU (%) | Kappa (%) |
---|---|---|---|
UNet | 87.89 | 78.39 | 86.56 |
UNet++ | 87.17 | 77.26 | 85.78 |
DeepLabv3+ | 81.04 | 68.12 | 78.92 |
HRNet | 86.95 | 76.92 | 85.54 |
SwinUNet | 86.57 | 76.33 | 85.08 |
SegFormer | 87.02 | 77.02 | 85.60 |
TCNet | 88.88 | 79.98 | 87.67 |
UNetFormer | 87.16 | 77.25 | 85.76 |
MSSFNet (ours) | 90.76 | 83.08 | 89.75 |
Name | F1 (%) | IoU (%) | Kappa (%) |
---|---|---|---|
Baseline | 87.89 | 78.39 | 86.56 |
+SSFEB | 90.29 | 82.30 | 89.23 |
+SSFEB +MSAB | 90.76 | 83.08 | 89.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Hou, Y.; Wang, F.; Wang, J.; Zhu, J.; Guo, J. MSSFNet: A Multiscale Spatial–Spectral Fusion Network for Extracting Offshore Floating Raft Aquaculture Areas in Multispectral Remote Sensing Images. Sensors 2024, 24, 5220. https://doi.org/10.3390/s24165220
Yu H, Hou Y, Wang F, Wang J, Zhu J, Guo J. MSSFNet: A Multiscale Spatial–Spectral Fusion Network for Extracting Offshore Floating Raft Aquaculture Areas in Multispectral Remote Sensing Images. Sensors. 2024; 24(16):5220. https://doi.org/10.3390/s24165220
Chicago/Turabian StyleYu, Haomiao, Yingzi Hou, Fangxiong Wang, Junfu Wang, Jianfeng Zhu, and Jianke Guo. 2024. "MSSFNet: A Multiscale Spatial–Spectral Fusion Network for Extracting Offshore Floating Raft Aquaculture Areas in Multispectral Remote Sensing Images" Sensors 24, no. 16: 5220. https://doi.org/10.3390/s24165220
APA StyleYu, H., Hou, Y., Wang, F., Wang, J., Zhu, J., & Guo, J. (2024). MSSFNet: A Multiscale Spatial–Spectral Fusion Network for Extracting Offshore Floating Raft Aquaculture Areas in Multispectral Remote Sensing Images. Sensors, 24(16), 5220. https://doi.org/10.3390/s24165220