An ADPLL-Based GFSK Modulator with Two-Point Modulation for IoT Applications
Abstract
:1. Introduction
2. Related Works
3. ADPLL-Based GFSK Modulator Architecture
4. ADPLL-Based GFSK Modulator Circuitry
4.1. PFD-Based GRO TDC
4.1.1. Phase Frequency Detector (PFD)
4.1.2. Multipath Gated Ring Oscillator (GRO)
4.1.3. PVT-Adaptive LDO with Fast Transient Response
4.1.4. Coarse and Fine Conversions
4.2. LC DCO with ΔΣ Modulator
4.2.1. LC DCO with Coarse and Fine Capacitive Banks
4.2.2. GFSK Frequency Control Word (FCW) Range of DCO
4.3. LMS-Based DCO Gain Calibration
5. Experimental Results
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, B.W.; Imran, M.; Nasser, N.; Shoaib, M. Self-Aware Autonomous City: From Sensing to Planning. IEEE Commun. Mag. 2019, 57, 33–39. [Google Scholar] [CrossRef]
- Nieminen, J.; Gomez, C.; Isomaki, M.; Savolainen, T.; Patil, B.; Shelby, Z.; Xi, M.; Oller, J. Networking Solutions for Connecting Bluetooth Low Energy Enabled Machines to the Internet of Things. IEEE Netw. 2014, 28, 97–103. [Google Scholar] [CrossRef]
- Want, R.; Schilit, B.; Laskowski, D. Bluetooth LE Finds Its Niche. IEEE Pervasive Comput. 2013, 12, 12–16. [Google Scholar] [CrossRef]
- Yin, Y.; Yan, Y.; Wei, C.; Yang, S. A low-Power low-Cost GFSK demodulator with a robust frequency offset tolerance. IEEE Trans. Circuits Syst. II Express Briefs 2014, 61, 696–700. [Google Scholar] [CrossRef]
- King, T.; Kopf, S.; Haenselmann, T.; Lubberger, C.; Effelsberg, W. COMPASS: A probabilistic indoor positioning system based on 802.11 and digital compasses. In Proceedings of the 1st International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, Los Angeles, CA, USA, 26 September–1 October 2006; pp. 34–40. [Google Scholar]
- Woolley, M. Bluetooth Core Specification V5.1 Feature Overview. Available online: https://www.bluetooth.com/bluetooth-resources/bluetooth-core-specification-v5-1-feature-overview/ (accessed on 10 August 2024).
- Peng, K.-C.; Huang, C.-H.; Li, C.-J.; Horng, T.-S. High-performance frequency-hopping transmitters using two-point delta-sigma modulation. IEEE Trans. Microw. Theory Tech. 2004, 52, 2529–2535. [Google Scholar] [CrossRef]
- Staszewski, R.B.; Wallberg, J.L.; Rezeq, S.; Hung, C.M.; Eliezer, O.E.; Vemulapalli, S.K.; Fernando, C.; Maggio, K.; Staszewski, R.; Barton, N.; et al. All-digital PLL and transmitter for mobile phones. IEEE J. Solid-State Circuits 2005, 40, 2469–2482. [Google Scholar] [CrossRef]
- Tasca, D.; Zanuso, M.; Marzin, G.; Levantino, S.; Samori, C.; Lacaita, A.L. A 2.9-to-4.0 GHz fractional-N digital PLL with bangbang phase detector and 560 fs integrated jitter at 4.5 mW power. IEEE J. Solid-State Circuits 2011, 46, 2745–2758. [Google Scholar] [CrossRef]
- Marzin, G.; Levantino, S.; Samori, C.; Lacaita, A.L. A 20 Mb/s phase modulator based on a 3.6 GHz digital PLL with −36 dB EVM at 5 mW power. IEEE J. Solid-State Circuits 2012, 47, 2974–2988. [Google Scholar] [CrossRef]
- Chen, J.; Rong, L.; Jonsson, F.; Yang, G.; Zheng, L.R. The design of all-digital polar transmitter based on ADPLL and phase synchronized ΔΣ modulator. IEEE J. Solid-State Circuits 2012, 47, 1154–1164. [Google Scholar] [CrossRef]
- Kobayashi, H.; Kousai, S.; Yoshihara, Y.; Hamada, M. An all-digital 8-DPSK polar transmitter with second-order approximation scheme and phase rotation-constant digital PA for Bluetooth EDR in 65 nm CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011; pp. 174–176. [Google Scholar]
- Staszewski, R.B.; Waheed, K.; Dulger, F.; Eliezer, O.E. Spur-free multirate all-digital PLL for mobile phones in 65 nm CMOS. IEEE J. Solid-State Circuits 2011, 46, 2904–2919. [Google Scholar] [CrossRef]
- Ding, M.; Zhang, P.; He, Y.; Traferro, S.; Song, M.; Korpela, H.; Shibata, K.; Ueda, K.; Liu, Y.H.; Bachmann, C. A Bluetooth 5 transceiver with a phase-tracking RX and its corresponding digital baseband in 40-nm CMOS. IEEE J. Solid-State Circuits 2020, 56, 254–266. [Google Scholar] [CrossRef]
- Chen, X.; Breiholz, J.; Yahya, F.B.; Lukas, C.J.; Kim, H.S.; Calhoun, B.H.; Wentzloff, D.D. Analysis and design of an ultra-low-power bluetooth low-energy transmitter with ring oscillator-based ADPLL and 4× frequency edge combiner. IEEE J. Solid-State Circuits 2019, 54, 1339–1350. [Google Scholar] [CrossRef]
- Huang, H.; Liu, X.; Tang, Z.; Song, W.; Zhang, Y.; Ma, X.; Zhang, M.; Wang, J.; Wang, Z.; Li, G. A 2 nJ/bit, 2.3% FSK error fully integrated sub-2.4 GHz transmitter with duty-cycle controlled PA for medical band. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 5018–5029. [Google Scholar] [CrossRef]
- Liu, Y.; Rhee, W.; Wang, Z. A 1 Mb/s 2.86% EVM GFSK modulator based on ΔΣ BB-DPLL without background digital calibration. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Los Angeles, CA, USA, 4–6 August 2020; pp. 7–10. [Google Scholar]
- Staszewski, R.B.; Wallberg, J.; Hung, C.-M.; Feygin, G.; Entezari, M.; Leipold, D. LMS-based calibration of an RF digitally controlled oscillator for mobile phones. IEEE Trans. Circuits Syst. II Express Briefs 2006, 53, 225–229. [Google Scholar] [CrossRef]
- Yao, C.-W.; Ni, R.; Lau, C.; Wu, W.; Godbole, K.; Zuo, Y.; Ko, S.; Kim, N.-S.; Han, S.; Jo, I.; et al. A 14-nm 0.14-psrms Fractional-N digital PLL with a 0.2-ps resolution ADC-assisted coarse/fine-conversion chopping TDC and TDC nonlinearity calibration. IEEE J. Solid-State Circuits 2017, 52, 3446–3457. [Google Scholar] [CrossRef]
- Straayer, M.Z.; Perrott, M.H. A multi-path gated ring oscillator TDC with first-order noise shaping. IEEE J. Solid-State Circuits 2009, 44, 1089–1098. [Google Scholar] [CrossRef]
- Yang, S.; Yin, J.; Yi, H.; Yu, W.H.; Mak, P.I.; Martins, R.P. A 0.2-V Energy-Harvesting BLE Transmitter with a Micropower Manager Achieving 25% System Efficiency at 0-dBm Output and 5.2-nW Sleep Power in 28-nm CMOS. IEEE J. Solid-State Circuits 2019, 54, 1351–1362. [Google Scholar] [CrossRef]
- Tamura, M.; Takano, H.; Nakahara, H.; Fujita, H.; Arisaka, N.; Shinke, S.; Suzuki, N.; Nakada, Y.; Shinohe, Y.; Etou, S.; et al. A 0.5-V BLE transceiver with a 1.9-mW RX achieving −96.4-dBm sensitivity and −27-dBm tolerance for intermodulation from interferers at 6- and 12-MHz offsets. IEEE J. Solid-State Circuits 2020, 55, 3376–3386. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, D.; Qiu, J.; Liu, Z.; Zhang, Y.; Huang, H.; Liu, H.; Liu, B.; Li, Z.; Pang, J.; et al. A 0.25 mm2 BLE Transmitter with Direct Antenna Interface and 19% System Efficiency Using Duty-Cycled Edge-Timing Calibration. In Proceedings of the ESSCIRC 2021-IEEE 47th European Solid State Circuits Conference (ESSCIRC), Grenoble, France, 13–16 September 2021; pp. 499–502. [Google Scholar]
- Wu, C.H.; Hunter, C.; Bae, J.; Kim, H.; Chang, J.; Sharpe, J.; Ryu, I.; Joo, S.; Ha, B.; Ko, W.; et al. A 28nm CMOS wireless connectivity combo IC with a reconfigurable 2×2 MIMO WiFi supporting 80+80MHz 256-QAM, and BT 5.0. In Proceedings of the 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Philadelphia, PA, USA, 10–12 June 2018; pp. 300–303. [Google Scholar]
- Mansuri, M.; Liu, D.; Yang, C.-K. Fast frequency acquisition phase frequency detectors for Gsamples/s phase-locked loops. IEEE J. Solid State Circuits 2002, 37, 1331–1334. [Google Scholar] [CrossRef]
- Lu, Y.; Ki, W.-H.; Yue, C.P. An NMOS-LDO regulated switched-capacitor DC–DC converter with fast-response adaptive-phase digital control. IEEE Trans. Power Electron. 2015, 31, 1294–1303. [Google Scholar] [CrossRef]
This Work | [16] TCAS-I 22 | [14] JSSC 21 | [23] ESSCIRC 21 | [17] RFIC 20 | [22] JSSC 20 | [15] JSSC 19 | [21] JSSC 19 | [24] RFIC 18 | |
---|---|---|---|---|---|---|---|---|---|
Technology (nm) | 28 | 40 | 40 | 65 | 65 | 65 | 40 | 22 | 28 |
PLL Architecture | ADPLL | ADPLL | ADPLL | ADPLL | BB-DPLL | ADPLL | DPLL | Analog PLL | ADPLL |
Oscillator Type | LC DCO | LC VCO | LC DCO | Ring DCO | LC DCO | LC DCO | Ring VCO | LC VCO | LC DCO |
Frequency Range | 2.21~2.58 | 2.36~2.40 | 2.1~2.7 | 2~2.8 | 1.6~1.94 | 2.4~2.48 | 2.4~2.48 | 2.4~2.48 | 2.4~2.48 |
GFSK Modulation | Two-Point | Two-Point | Two-Point | Single Point | Two-Point | Two-Point | Single Point | Single Point | Two-Point |
Data Rate (Mb/s) | 2 | 0.971 | 2 | 2 | 1 | 2 | 1 | 1 | 1 |
Background Calibration | Yes | Yes | Yes | Yes | No | No | Yes | Yes | Yes |
In-Band Noise (dBc/Hz) | −102.1 (@2.48 GHz) | −94 (@2.4 GHz) | N/A | −85.7 (@2.4 GHz) | −98 (@1.2 GHz) | N/A | −85 (@2.402 GHz) | −83 (@2.428 GHz) | N/A |
Power (mW) | 1.6 | 4.85 | 1.96 | 1.2 | 5.3 | 7.8 | 1.55 | 3.97 | N/A |
FSK Error (%) | 1.42 | 2.3 | 1.86 | 5.9 | 2.86 | 1.6 | 9.1 | 2.84 | N/A |
SMI | Yes | No | No | No | No | No | No | No | Yes |
Core Area (mm2) | 0.331 | 0.48 | 0.38 * | 0.25 | 0.383 | 0.63 | 0.017 | 0.53 | 1.47 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, N.-S. An ADPLL-Based GFSK Modulator with Two-Point Modulation for IoT Applications. Sensors 2024, 24, 5255. https://doi.org/10.3390/s24165255
Kim N-S. An ADPLL-Based GFSK Modulator with Two-Point Modulation for IoT Applications. Sensors. 2024; 24(16):5255. https://doi.org/10.3390/s24165255
Chicago/Turabian StyleKim, Nam-Seog. 2024. "An ADPLL-Based GFSK Modulator with Two-Point Modulation for IoT Applications" Sensors 24, no. 16: 5255. https://doi.org/10.3390/s24165255
APA StyleKim, N.-S. (2024). An ADPLL-Based GFSK Modulator with Two-Point Modulation for IoT Applications. Sensors, 24(16), 5255. https://doi.org/10.3390/s24165255