Real-Time Sensing of Upper Extremity Movement Diversity Using Kurtosis Implemented on a Smartwatch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1: Do Different Therapeutic Activities Generate Different Values of Kurtosis?
2.2. Algorithm for Fast Real-Time Calculation of Kurtosis
- denotes the sample variance of the most recent k observation values, and it can recursively be updated through its corresponding auxiliary variable by rolling the observation window to include new values while removing the oldest ones.
- represents the sample skewness of the most recent k observation values. When the observation window keeps rolling forward, the continuous updating of will be realized through the recursive calculations of the auxiliary variables and .
- represents the sample kurtosis of the most recent k observation values xn−k+1, xn-k+2, …, xn. When the observation window keeps rolling forward, the continuous update of will be based on the recursive calculations of the auxiliary variables , , and .
- xo represents the last sensor value from the previous iteration.
- xn+1 represents the new sensor value, which will update the Rolling Sample Kurtosis.
- stands for the sample mean of the most recent k observation values, while indicates the updated sample mean after rolling the observation window to include the new value xn+1 while removing the oldest one xo (i.e., xn−k+1).
2.3. Experiment 2: Robotic Validation of the Rolling Sample Kurtosis Calculation as Implemented on a Smartwatch
3. Results
3.1. Different Therapeutic Activities Generated a Wide Range of Kurtosis Values
3.2. The Rolling Sample Kurtosis (RSK) Algorithm Accelerated Computation Speed
3.3. Robotic Validation of the Rolling Sample Kurtosis Calculation as Implemented on a Smartwatch
4. Discussion
4.1. Daily Activities and Forearm Postural Kurtosis
4.2. Recursive Algorithm Accelerates Computation Speed
4.3. Robotic Validation of Smartwatch Algorithms
4.4. Toward Clinical Application of QOME-Based Feedback
4.5. Other Potential Uses of Kurtosis
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- The maximization of the usage of intermediate results to avoid repeating the same calculations.
- The minimization of the multiplication operations to reduce the calculation overhead, e.g., (xn+1 + x0 -2) in (2) should be calculated in the way of [(xn+1 − ) + (x0 − )], which also maximizes the usage of intermediate results if (xn+1 − ) and (x0 − ) are already calculated beforehand.
- The avoidance of exponential calculations. For example, we can use a temporary variable to save the intermediate result, e.g., dif = ( − ). As such, ( − )2 can be calculated as dif2 = dif*dif, and ( − )3 can be calculated as dif3 = dif*dif2.
Algorithm A1. Rolling Sample Kurtosis | |
| |
| |
newValue | → a new tilt angle is generated |
if (i == 1 and poppedValue == −1) then | → when receiving the first calculated tilt angle |
newMean = newValue | → update the mean |
newM2 = newM3 = newM4 = newKurtosis = 0 | → initialize variables |
else if (poppedValue == −1) then | → Incremental approach (the buffer is not full yet) |
delta = newValue - oldMean | |
delta_n = delta/i | |
delta_n2 = delta_n*delta_n | |
term1 = delta * delta_n * (i − 1) | |
newMean = oldMean + delta_n | → Cumulative Sample Mean (CSM) |
dif1 = newValue – newMean | → Intermediate assignations |
dif2 = newMean − oldMean | |
newM2 = oldM2 + dif1*(_newValue - oldMean) | → Cumulative Sample Variance (CSV) |
newM3 = oldM3 − 3*dif2*oldM2 + (newM2 − oldM2)*(dif1 − dif2) | → Cumulative Sample Skewness (CSS) |
newM4 = oldM4 + term1 * delta_n2 *(i*i − 3*i + 3) + 6*delta_n2*oldM2 - 4*delta_n*oldM3 | → Cumulative Sample Kurtosis (CSK) |
newKurtosis = i * newM4 / (newM2 *newM2) | → Kurtosis |
else | → Rolling approach (the buffer is full) |
dif3 = newValue - poppedValue | → Intermediate assignations |
newMean = oldMean + dif3/MAX_SIZE | → Rolling Sample Mean (RSM) |
dif4 = poppedValue − newMean | → Intermediate assignations |
dif5 = newValue − newMean | |
dif6 = newMean − oldMean | |
dif7 = _poppedValue − oldMean | |
sum1 = dif4 + dif5 | |
newM2 = oldM2 + dif3*(dif5 + dif7) | → Rolling Sample Variance (RSV) |
newM3 = oldM3 − 3*dif6*oldM2 + dif3*(dif7*(dif4 − dif6) + dif5*sum1) | → Rolling Sample Skewness (RSS) |
dif6_2 = dif6*dif6 | → to avoid exponential calculations |
newM4 = oldM4 − 4*dif6*oldM3 + 6*dif6_2*oldM2 + dif3*(dif6*dif6_2 + sum1*(dif5*dif5 + dif4*dif4)) | → Rolling Sample Kurtosis |
newKurtosis = MAX_SIZE * newM4 / (newM2 * newM2) | → Kurtosis |
end if | |
_mean = newMean _M2 = newM2 _M3 = newM3 _M4 = newM4 _kurtosis = newKurtosis | → update the old values with the new ones |
return newMean, newM2, newM3, newM4, newKurtosis |
Appendix B
Appendix C
Appendix D
References
- Bravata, D.M.; Smith-Spangler, C.; Sundaram, V.; Gienger, A.L.; Lin, N.; Lewis, R.; Stave, C.D.; Olkin, I.; Sirard, J.R. Using pedometers to increase physical activity and improve health: A systematic review. JAMA 2007, 298, 2296–2304. [Google Scholar] [CrossRef]
- Adans-Dester, C.P.; Lang, C.E.; Reinkensmeyer, D.J.; Bonato, P. Wearable Sensors for Stroke Rehabilitation. In Neurorehabilitation Technology, 3rd ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 467–507. [Google Scholar] [CrossRef]
- Okita, S.; Reinkensmeyer, D. Forearm Postural Diversity and Complexity: Targets for Wearable Feedback after Stroke? American Society of Neurorehabilitation: Charleston, SC, USA, 2023. [Google Scholar]
- Balasubramanian, S.; Melendez-Calderon, A.; Burdet, E. A Robust and Sensitive Metric for Quantifying Movement Smoothness. IEEE Trans. Biomed. Eng. 2012, 59, 2126–2136. [Google Scholar] [CrossRef]
- DeJong, S.L.; Schaefer, S.Y.; Lang, C.E. Need for speed: Better movement quality during faster task performance after stroke. Neurorehabil. Neural Repair 2012, 26, 362–373. [Google Scholar] [CrossRef]
- Cirstea, M.C.; Levin, M.F. Compensatory strategies for reaching in stroke. Brain J. Neurol. 2000, 123 Pt 5, 940–953. [Google Scholar] [CrossRef]
- Ellis, M.D.; Lan, Y.; Yao, J.; Dewald, J.P.A. Robotic quantification of upper extremity loss of independent joint control or flexion synergy in individuals with hemiparetic stroke: A review of paradigms addressing the effects of shoulder abduction loading. J. Neuroeng. Rehabil. 2016, 13, 95. [Google Scholar] [CrossRef]
- Krakauer, J.W.; Kitago, T.; Goldsmith, J.; Ahmad, O.; Roy, P.; Stein, J.; Bishop, L.; Casey, K.; Valladares, B.; Harran, M.D.; et al. Comparing a Novel Neuroanimation Experience to Conventional Therapy for High-Dose Intensive Upper-Limb Training in Subacute Stroke: The SMARTS2 Randomized Trial. Neurorehabil. Neural Repair 2021, 35, 393–405. [Google Scholar] [CrossRef]
- Huang, F.C.; Patton, J.L. Augmented Dynamics and Motor Exploration as Training for Stroke. IEEE Trans. Biomed. Eng. 2013, 60, 838–844. [Google Scholar] [CrossRef]
- Huang, F.C.; Patton, J.L. Individual patterns of motor deficits evident in movement distribution analysis. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Rast, F.M.; Labruyère, R. Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments. J. NeuroEngineering Rehabil. 2020, 17, 148. [Google Scholar] [CrossRef]
- Cinnera, A.M.; Picerno, P.; Bisirri, A.; Koch, G.; Morone, G.; Vannozzi, G. Upper limb assessment with inertial measurement units according to the international classification of functioning in stroke: A systematic review and correlation meta-analysis. Top. Stroke Rehabil. 2024, 31, 66–85. [Google Scholar] [CrossRef]
- Okita, S.; de Lucena, D.S.; Reinkensmeyer, D. Movement Diversity and Complexity Increase as Arm Impairment Decreases after Stroke: Quality of Movement Experience as a Possible Target for Wearable Feedback; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar] [CrossRef]
- See, J.; Dodakian, L.; Chou, C.; Chan, V.; McKenzie, A.; Reinkensmeyer, D.J.; Cramer, S.C. A Standardized Approach to the Fugl-Meyer Assessment and Its Implications for Clinical Trials. Neurorehabil. Neural Repair 2013, 27, 732–741. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive statistics and normality tests for statistical data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Zondervan, D.K.; Friedman, N.; Chang, E.; Zhao, X.; Augsburger, R.; Reinkensmeyer, D.J.; Cramer, S.C. Home-based hand rehabilitation after chronic stroke: Randomized, controlled single-blind trial comparing the MusicGlove with a conventional exercise program. J. Rehabil. Res. Dev. 2016, 53, 457–472. [Google Scholar] [CrossRef]
- Swanson, V.A.; Johnson, C.; Zondervan, D.K.; Bayus, N.; McCoy, P.; Ng, Y.F.J.; Schindele, B.J.; Reinkensmeyer, D.J.; Shaw, S. Optimized Home Rehabilitation Technology Reduces Upper Extremity Impairment Compared to a Conventional Home Exercise Program: A Randomized, Controlled, Single-Blind Trial in Subacute Stroke. Neurorehabil. Neural Repair 2023, 37, 53–65. [Google Scholar] [CrossRef]
- de Lucena, D.S.; Rowe, J.; Chan, V.; Reinkensmeyer, D.J. Magnetically Counting Hand Movements: Validation of a Calibration-Free Algorithm and Application to Testing the Threshold Hypothesis of Real-World Hand Use after Stroke. Sensors 2021, 21, 1502. [Google Scholar] [CrossRef] [PubMed]
- Pedley, M. Tilt Sensing Using a Three-Axis Accelerometer. Free. Semicond. Appl. Note 2013, 1, 2012–2013. [Google Scholar]
- Li, Z.; Galdames-Retamal, J. On IoT-Friendly Skewness Monitoring for Skewness-Aware Online Edge Learning. Appl. Sci. 2021, 11, 7461. [Google Scholar] [CrossRef]
- Banos, O.; Galvez, J.-M.; Damas, M.; Pomares, H.; Rojas, I. Window Size Impact in Human Activity Recognition. Sensors 2014, 14, 6474–6499. [Google Scholar] [CrossRef]
- Tola, D.; Corke, P. Understanding URDF: A Dataset and Analysis. arXiv 2023, arXiv:2308.00514. [Google Scholar] [CrossRef]
- Robotics Toolbox. Peter Corke. Available online: https://petercorke.com/toolboxes/robotics-toolbox/ (accessed on 15 May 2024).
- Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. (Eds.) Kinematics. In Robotics: Modelling, Planning and Control; Springer: London, UK, 2009; pp. 39–103. [Google Scholar] [CrossRef]
- Mann, K.A.; Wernere, F.W.; Palmer, A.K. Frequency spectrum analysis of wrist motion for activities of daily living. J. Orthop. Res. 1989, 7, 304–306. [Google Scholar] [CrossRef]
- Green, J.M. Examination of Control and Co-Ordination of Fast Versus Slow Movements in Patients Following Stroke. Ph.D. Thesis, UNSW, Sydney, Australia, 1995. [Google Scholar] [CrossRef]
- Hingtgen, B.; McGuire, J.R.; Wang, M.; Harris, G.F. An upper extremity kinematic model for evaluation of hemiparetic stroke. J. Biomech. 2006, 39, 681–688. [Google Scholar] [CrossRef]
- Ludwig, S.A.; Burnham, K.D. Comparison of Euler Estimate using Extended Kalman Filter, Madgwick and Mahony on Quadcopter Flight Data. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1236–1241. [Google Scholar] [CrossRef]
- Bai, J.; Ng, S. Tests for Skewness, Kurtosis, and Normality for Time Series Data. J. Bus. Econ. Stat. 2005, 23, 49–60. [Google Scholar] [CrossRef]
- Blanca, M.J.; Arnau, J.; López-Montiel, D.; Bono, R.; Bendayan, R. Skewness and Kurtosis in Real Data Samples. Methodology 2013, 9, 78–84. [Google Scholar] [CrossRef]
- Bernardeau, F. Skewness and Kurtosis in Large-Scale Cosmic Fields. Astrophys. J. 1994, 433, 1. [Google Scholar] [CrossRef]
- Co-Kurtosis and Capital Asset Pricing-Fang-1997-Financial Review-Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6288.1997.tb00426.x (accessed on 25 July 2024).
- Hui, E.S.; Cheung, M.M.; Qi, L.; Wu, E.X. Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. NeuroImage 2008, 42, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Hui, E.S.; Fieremans, E.; Jensen, J.H.; Tabesh, A.; Feng, W.; Bonilha, L.; Spampinato, M.V.; Adams, R.; Helpern, J.A. Stroke Assessment with Diffusional Kurtosis Imaging. Stroke 2012, 43, 2968–2973. [Google Scholar] [CrossRef]
- Rosenkrantz, A.B.; Padhani, A.R.; Chenevert, T.L.; Koh, D.; De Keyzer, F.; Taouli, B.; Le Bihan, D. Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice. J. Magn. Reson. Imaging 2015, 42, 1190–1202. [Google Scholar] [CrossRef]
Link i | ai | αi | di | qi |
---|---|---|---|---|
4 | 0 | −pi/2 | 0.056 | q4 |
5 | 0 | pi/2 | 0.000 | q5 |
6 | 0 | 0 | 0.300 | q6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cornella-Barba, G.; Okita, S.; Li, Z.; Reinkensmeyer, D.J. Real-Time Sensing of Upper Extremity Movement Diversity Using Kurtosis Implemented on a Smartwatch. Sensors 2024, 24, 5266. https://doi.org/10.3390/s24165266
Cornella-Barba G, Okita S, Li Z, Reinkensmeyer DJ. Real-Time Sensing of Upper Extremity Movement Diversity Using Kurtosis Implemented on a Smartwatch. Sensors. 2024; 24(16):5266. https://doi.org/10.3390/s24165266
Chicago/Turabian StyleCornella-Barba, Guillem, Shusuke Okita, Zheng Li, and David J. Reinkensmeyer. 2024. "Real-Time Sensing of Upper Extremity Movement Diversity Using Kurtosis Implemented on a Smartwatch" Sensors 24, no. 16: 5266. https://doi.org/10.3390/s24165266
APA StyleCornella-Barba, G., Okita, S., Li, Z., & Reinkensmeyer, D. J. (2024). Real-Time Sensing of Upper Extremity Movement Diversity Using Kurtosis Implemented on a Smartwatch. Sensors, 24(16), 5266. https://doi.org/10.3390/s24165266