NABNet: Deep Learning-Based IoT Alert System for Detection of Abnormal Neck Behavior
Abstract
:1. Introduction
- This paper proposes a deep learning-based solution for monitoring and detecting abnormal neck behavior in sedentary people; specifically, the proposed NABNet detects head tilt and dropped head events.
- The features inherent in abnormal neck behaviors are fully considered to alleviate false alarms. NABNet combines YOLOv5s with a CA mechanism to enhance the robustness of object detection, then uses OpenPose-guided skeleton and angle relationship information to judge the neck position.
- A NABNet-based detection system was deployed on edge-end IoT devices, and its performance was tested in practical scenarios. Our experimental results demonstrate the effectiveness of NABNet for detecting abnormal neck behavior.
2. Related Works
2.1. Object Detection
2.2. Abnormal Behavior Detection
3. Methods
3.1. Overview
3.2. Object Detection and Tracking
3.3. Detection of Abnormal Neck Behavior
4. NABNet-Based IoT Alert System
5. Experiments
5.1. Setup
5.2. Evaluation of NABNet-Based IoT System
5.3. Ablation Studies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Doewes, R.I.; Gharibian, G.; Zaman, B.A.; Akhavan-Sigari, R. An updated systematic review on the effects of aerobic exercise on human blood lipid profile. Curr. Probl. Cardiol. 2023, 48, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, Y.; Li, R.; Ding, L. A fusion of a deep neural network and a hidden Markov model to recognize the multiclass abnormal behavior of elderly people. Knowledge-Based Syst. 2022, 252, 109351. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Xue, Y.; Qian, X. AJENet: Adaptive joints enhancement network for abnormal behavior detection in office scenario. IEEE Trans. Circuits Syst. Video Technol. 2023, 252, 1427–1440. [Google Scholar] [CrossRef]
- Ma, C.; Du, J.; Gravina, R. Abnormal behavior detection based on activity level using fuzzy inference system for wheelchair users. Human-Centric Comput. Inf. Sci. 2022, 12, 10.22967. [Google Scholar]
- Arifoglu, D.; Wang, Y.; Bouchachia, A. Detection of dementia-related abnormal behaviour using recursive auto-encoders. Sensors 2021, 21, 260. [Google Scholar] [CrossRef] [PubMed]
- Tokas, P. Machine learning based text neck syndrome detection using Microsoft Kinect sensor. Mater. Today Proc. 2023, 80, 3751–3756. [Google Scholar] [CrossRef]
- Alruwaili, M.; Siddiqi, M.H.; Atta, M.N.; Arif, M. Deep learning and ubiquitous systems for disabled people detection using YOLO models. Comput. Hum. Behav. 2024, 154, 108150. [Google Scholar] [CrossRef]
- Fu, Y.; Ran, T.; Xiao, W.; Yuan, L.; Zhao, J.; He, L.; Mei, J. GD-YOLO: An improved convolutional neural network architecture for real-time detection of smoking and phone use behaviors. Digit. Signal Process. 2024, 151, 104554. [Google Scholar] [CrossRef]
- Cao, C.; Lan, C.; Zhang, Y.; Zeng, W.; Lu, H.; Zhang, Y. Skeleton-based action recognition with gated convolutional neural networks. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 3247–3257. [Google Scholar] [CrossRef]
- Lentzas, A.; Vrakas, D. Non-intrusive human activity recognition and abnormal behavior detection on elderly people: A review. Artif. Intell. Rev. 2020, 53, 1975–2021. [Google Scholar] [CrossRef]
- YOLOv5. Available online: https://github.com/ultralytics/yolov5 (accessed on 22 November 2022).
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 25 June 2021; pp. 13713–13722. [Google Scholar]
- Osokin, D. Real-time 2d multi-person pose estimation on cpu: Lightweight openpose. arXiv 2018, arXiv:1811.12004. [Google Scholar]
- Zhang, D.; Han, J.; Cheng, G.; Yang, M.H. Weakly supervised object localization and detection: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 5866–5885. [Google Scholar] [CrossRef] [PubMed]
- Chaoxia, C.; Shang, W.; Zhang, F.; Cong, S. Weakly aligned multimodal flame detection for fire-fighting robots. IEEE IEEE Trans. Ind. Inform. 2022, 19, 2866–2875. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 80–587. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 2866–2875. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks. Neural Inf. Process. Syst. 2016, 29, 379–387. [Google Scholar]
- Pang, J.; Chen, K.; Shi, J.; Feng, H.; Ouyang, W.; Lin, D. Libra r-cnn: Towards balanced learning for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 821–830. [Google Scholar]
- Chen, Z.; Chen, D.; Zhang, Y.; Cheng, X.; Zhang, M.; Wu, C. Deep learning for autonomous ship-oriented small ship detection. Saf. Sci. 2020, 130, 104812. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14. pp. 21–37. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Li, Y.; Xue, Y.; Li, L.; Zhang, X.; Qian, X. Domain adaptive box-supervised instance segmentation network for mitosis detection. IEEE Trans. Med. Imag. 2022, 41, 2469–2485. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lai, S.; Qian, X. Dbcface: Towards pure convolutional neural network face detection. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 1792–1804. [Google Scholar] [CrossRef]
- Liu, C.; Da, Z.; Liang, Y.; Xue, Y.; Zhao, G.; Qian, X. Product recognition for unmanned vending machines. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 1584–1597. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, D.; Zhang, W.; Xiao, C. YOLO-PL: Helmet wearing detection algorithm based on improved YOLOv4. Digit. Signal Process. 2023, 144, 104283. [Google Scholar] [CrossRef]
- Qiu, J.; Yan, X.; Wang, W.; Wei, W.; Fang, K. Skeleton-based abnormal behavior detection using secure partitioned convolutional neural network model. IEEE J. Biomed. Health Inform. 2021, 26, 5829–5840. [Google Scholar] [CrossRef] [PubMed]
- Naser, A.; Lotfi, A.; Mwanje, M.D.; Zhong, J. Privacy-preserving, thermal vision with human in the loop fall detection alert system. IEEE T. Hum.-Mach. Syst. 2022, 53, 164–175. [Google Scholar] [CrossRef]
- Jin, F.; Zhang, R.; Sengupta, A.; Cao, S.; Hariri, S.; Agarwal, N.K.; Agarwal, S.K. Multiple patients behavior detection in real-time using mmWave radar and deep CNNs. In Proceedings of the 2019 IEEE Radar Conference, Boston, MA, USA, 22–26 April 2019; pp. 1–6. [Google Scholar]
- Okumura, N.; Yamanoi, Y.; Kato, R.; Yamamura, O. Fall detection and walking estimation using floor vibration for solitary elderly people. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 1437–1442. [Google Scholar]
- Santos, G.L.; Endo, P.T.; Monteiro, K.H.d.C.; Rocha, E.d.S.; Silva, I.; Lynn, T. Accelerometer-based human fall detection using convolutional neural networks. Sensors 2019, 19, 1644. [Google Scholar] [CrossRef] [PubMed]
- Alruwaili, M.; Atta, M.N.; Siddiqi, M.H.; Khan, A.; Khan, A.; Alhwaiti, Y.; Alanazi, S. Deep Learning-Based YOLO Models for the Detection of People With Disabilities. IEEE Access 2023, 12, 2543–2566. [Google Scholar] [CrossRef]
- Fang, M.-T.; Chen, Z.-J.; Przystupa, K.; Li, T.; Majka, M.; Kochan, O. Examination of abnormal behavior detection based on improved YOLOv3. Electronics 2021, 10, 197. [Google Scholar] [CrossRef]
- Mehmood, A. Lightanomalynet: A lightweight framework for efficient abnormal behavior detection. Sensors 2021, 21, 8501. [Google Scholar] [CrossRef] [PubMed]
- Bochkovskiy, A.; Wang, C.; Liao, H. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Gündüz, M.; Işık, G. A new YOLO-based method for real-time crowd detection from video and performance analysis of YOLO models. J. Real-Time Image Process. 2023, 20, 5–17. [Google Scholar] [CrossRef]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognitio, Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar]
- Dai, Y.; Yu, S.; Yan, Y. An adaptive EKF-FMPC for the trajectory tracking of UVMS. IEEE J. Ocean. Eng. 2019, 45, 699–713. [Google Scholar] [CrossRef]
- Maji, D.; Nagori, S.; Mathew, M.; Poddar, D. Yolo-pose: Enhancing yolo for multi person pose estimation using object keypoint similarity loss. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 2637–2646. [Google Scholar]
- Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7291–7299. [Google Scholar]
- Stearns, C.; Kannappan, K. Method for 2-D Affine Transformation of Images. US Patent US5475803, 12 December 1995. Application No. 07/911832, 10 July 1992. [Google Scholar]
- Auvinet, E.; Rougier, C.; Meunier, J.; St-Arnaud, A.; Rousseau, J. Multiple cameras fall dataset. DIRO-Université Montréal Tech. Rep. 2010, 1350, 24. [Google Scholar]
- Charfi, I.; Miteran, J.; Dubois, J.; Atri, M.; Tourki, R. Optimized spatio-temporal descriptors for real-time fall detection: Comparison of support vector machine and Adaboost-based classification. J. Electron. Imag. 2013, 22, 041106. [Google Scholar] [CrossRef]
- Chua, J.-L.; Chang, Y.C.; Lim, W.K. A simple vision-based fall detection technique for indoor video surveillance. Signal Image Video Process. 2015, 9, 623–633. [Google Scholar] [CrossRef]
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Kalal, Z.; Mikolajczyk, K.; Matas, J. Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 1409–1422. [Google Scholar] [CrossRef] [PubMed]
Parameters | Configuration |
---|---|
SOC | CM2711 |
CPU | ARM Cortex-A72 1.5 GHz |
GPU | Broadcom VideoCore IV |
Memory | 4 GB LPDDR4 |
Power | 5 V Micro USB |
Supported Systems | Raspbian/Ubuntu/Windows10/Linux |
0.5 m | 0.75 m | |||||
---|---|---|---|---|---|---|
Position | Recall (%) | Precision (%) | Accuracy (%) | Recall (%) | Precision (%) | Accuracy (%) |
Front position | 97.50 | 96.30 | 96.88 | 96.25 | 96.25 | 96.25 |
30° right rotation | 97.50 | 98.73 | 98.13 | 95.00 | 97.44 | 96.25 |
30° left rotation | 95.00 | 97.44 | 96.25 | 97.50 | 93.98 | 95.63 |
60° right rotation | 86.25 | 92.00 | 89.38 | 86.25 | 87.34 | 86.88 |
60° left rotation | 88.75 | 91.03 | 90.00 | 87.50 | 88.61 | 88.13 |
Mean | 93 | 95.1 | 94.13 | 92.5 | 92.72 | 92.63 |
Model | CA Mechanism | Tracker | Angle Correction | Accuracy (%) |
---|---|---|---|---|
YOLOv5s | 67.44 | |||
YOLOv5s | √ | 71.02 | ||
YOLOv5s | √ | KCF | 87.45 | |
YOLOv5s | √ | TLD | 78.63 | |
YOLOv5s | √ | Ours | 85.41 | |
YOLOv5s | √ | Ours | √ | 94.13 |
Tracker | Detection Frame Rate (fps) |
---|---|
KCF | 17.61 |
TLD | 9.95 |
Ours | 43.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, H.; Cai, M.; Qin, H. NABNet: Deep Learning-Based IoT Alert System for Detection of Abnormal Neck Behavior. Sensors 2024, 24, 5379. https://doi.org/10.3390/s24165379
Qin H, Cai M, Qin H. NABNet: Deep Learning-Based IoT Alert System for Detection of Abnormal Neck Behavior. Sensors. 2024; 24(16):5379. https://doi.org/10.3390/s24165379
Chicago/Turabian StyleQin, Hongshuai, Minya Cai, and Huibin Qin. 2024. "NABNet: Deep Learning-Based IoT Alert System for Detection of Abnormal Neck Behavior" Sensors 24, no. 16: 5379. https://doi.org/10.3390/s24165379
APA StyleQin, H., Cai, M., & Qin, H. (2024). NABNet: Deep Learning-Based IoT Alert System for Detection of Abnormal Neck Behavior. Sensors, 24(16), 5379. https://doi.org/10.3390/s24165379