A Review of Microstrip Patch Antenna-Based Passive Sensors
Abstract
:1. Introduction
2. Historical Overview of Antenna-Based Sensors
3. Antenna Basics and Design Considerations for Sensing Applications
- Conductivity
- Loss tangent (tan)
4. Existing Antenna-Based Sensing Mechanisms
- sensing based on resonant frequency shift,
- sensing based on return loss variation,
- sensing based on phase variation,
- sensing based on both resonant frequency shift and return loss variation,
- and sensing based on received signal strength.
4.1. Sensing Based on Frequency Shift
4.2. Sensing Based on Return Loss Variation
4.3. Sensing Based on Phase Variation
4.4. Sensing Based on Both Frequency Shift and Return Loss Variation
4.5. Sensing Based on Received Signal Strength
Ref. | Sensing Technique | Antenna Type | Operating Frequency | Substrate | Size | Target Application |
---|---|---|---|---|---|---|
[7] | Frequency shift | Microstrip Array | 1.108 GHz | RO4003C | 125 × 51 × 1.52 mm3 | Cancer tumor |
[17] | Frequency shift | Microstrip Patch | 2.9 GHz | Silicon | 20 × 10 × 5 mm3 | Salinity sensing |
[9] | Frequency shift | Microstrip antenna | 2.45 GHz | RT6010 | 13.2 mm3 | Cancer tumor |
[31] | Frequency shift | Microstrip Patch | 2.42 GHz | FR-4 | 56.2 × 70 × 1.6 mm3 | Temperature sensing |
[87] | Frequency shift | DRA | 5.25 GHz | FR-4 | 30 × 30 × 1.6 mm3 r = 6.35 mm, h = 9 mm | Liquid chemical detection |
[88] | Frequency shift | DRA | 4.725 GHz | Rogers RT/Duroid 5880 | 60 × 60 × 1.52 mm3, r = 10 mm, h = 10 mm | Glucose sensing |
[89] | Frequency shift | DRA | 4.32–4.5 THz | silver-plated Arlon AD410 | 62 × 62 × 2 μm3, r = 28 μm, h = 10 μm | Hemoglobin sensing |
[20] | RL variation | Microstrip Patch | 3.6 GHz | FR-4 | 60 × 65 × 1.6 mm3 | Methanol detection |
[22] | RL variation | Microstrip Patch | 1–6 GHz | Rogers TMM10i | N/A | Chemical vapor detection |
[32] | RL variation | Microstrip Patch | 3.927 GHz | FR-4 | 20 × 22.5 mm2 | Ice thickness |
[19] | RL variation | Microstrip Patch | 3.2–10.6 GHz | FR-4 | 33.7 × 27.5 × 0.8 mm3 | Salinity/sugar sensing and water quality |
[77] | Phase variation | Microstrip antenna | 2.83 GHz | Rogers 3010 | 27 × 25 mm2 | Metal crack detection |
[79] | Phase variation | Microstrip antenna | 2.45 GHz | Rogers RO3010 | 15.5 × 6.25 mm2 | Metal crack detection |
[76] | Phase variation | Microstrip antenna | 2.45 GHz | Rogers RO3010 | 15.5 × 7.6 mm2 15.5 × 6.25 mm2 | Metal crack detection |
[11] | Frequency shift + RL variation | Microstrip Patch | 2–4 GHz | Cellulose filter paper | 60 × 50 mm2 | Non-invasive sweat sensing |
[14] | Frequency shift + RL variation | Microstrip Patch | 10–25 GHz | Rogers RO 4003C | 150 × 42 × 0.5 mm3 | Aqueous glucose sensing |
[26] | Frequency shift + RL variation | FSS Antenna | 1–6 GHz | PF-4 | 60 × 28 × 50 mm3 | Moisture content in grains |
[35] | Frequency shift + RL variation | Microstrip Dipole | 9 GHz | Polymer | 17.2 × 15.6 mm2 | Mechanical stress and strain |
[10] | RSSI | Microstrip antenna | 1.5/3 GHz | Roger 5880 | 65 × 35 × 0.5 mm3 | Cough monitoring |
[27] | RSSI | Microstrip Dipole | 2.4–2.48 GHz | Paper/Silver ink | 10 × 48 mm2 | Relative Humidity (RH) |
[23] | RSSI + Frequency shift | Microstrip Patch | 1.3 GHz and 2.6 GHz | FR-4 | 85 × 85 × 1.6 mm3 | Liquid density sensing |
[21] | RSSI + Frequency shift | Microstrip Monopole | 1.2/1.3 GHz and 2–6 GHz | Rogers 5880 | 100 × 70 × 0.5 mm3 | Aqueous solution monitoring |
[24] | RSSI + + Frequency shift | Microstrip Patch | 2.86 GHz and 5.72 GHz | FR-4 | 25 × 12 × 1.5 mm3 | Water level sensing in a liquid (aceton) |
5. Antenna-Based Sensors and Resonator Sensors
5.1. mmWave Antenna-Based Sensors
5.2. Resonator Sensors
6. Challenges and Future Work
7. Conclusions
Funding
Conflicts of Interest
References
- McGrath, M.J.; Scanaill, C.N. Sensor Technologies: Healthcare, Wellness, and Environmental Applications; Springer Nature: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Huang, H. Antenna sensors in passive wireless sensing systems. Handb. Antenna Technol. 2016, 2795–2838. [Google Scholar] [CrossRef]
- Tan, Q. Processing and manufacturing technology of special sensors. Precis. Mach. 2020, 401–434. [Google Scholar] [CrossRef]
- Helena, D.; Ramos, A.; Varum, T.; Matos, J.N. Antenna design using modern additive manufacturing technology: A review. IEEE Access 2020, 8, 177064–177083. [Google Scholar] [CrossRef]
- Li, X.; Qin, L.; Guo, L.; Tan, Q. Flexible Langasite-Based Surface Acoustic Wave Strain Sensor for High-Temperature Operation. IEEE Sens. J. 2023, 23, 18022–18031. [Google Scholar] [CrossRef]
- Wang, B.; Law, M.K.; Yi, J.; Tsui, C.Y.; Bermak, A. A -12.3 dBm UHF passive RFID sense tag for grid thermal monitoring. IEEE Trans. Ind. Electron. 2019, 66, 8811–8820. [Google Scholar] [CrossRef]
- Aldhaeebi, M.A.; Almoneef, T.S.; Attia, H.; Ramahi, O.M. Near-Field Microwave Loop Array Sensor for Breast Tumor Detection. IEEE Sens. J. 2019, 19, 11867–11872. [Google Scholar] [CrossRef]
- Malik, N.A.; Sant, P.; Ajmal, T.; Ur-Rehman, M. Implantable antennas for bio-medical applications. IEEE J. Electromagn. RF Microwaves Med. Biol. 2020, 5, 84–96. [Google Scholar] [CrossRef]
- Wang, W.; Xuan, X.W.; Zhao, W.Y.; Nie, H.K. An Implantable Antenna Sensor for Medical Applications. IEEE Sens. J. 2021, 21, 14035–14042. [Google Scholar] [CrossRef]
- Zhu, L.; Hà, T.D.; Chen, Y.H.; Huang, H.; Chen, P.Y. A Passive Smart Face Mask for Wireless Cough Monitoring: A Harmonic Detection Scheme With Clutter Rejection. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 129–137. [Google Scholar] [CrossRef]
- Eldamak, A.; Fear, E. Conformal and Disposable Antenna-Based Sensor for Non-Invasive Sweat Monitoring. Sensors 2018, 18, 4088. [Google Scholar] [CrossRef]
- Raj, S.; Tripathi, S.; Upadhyay, G.; Tripathi, S.S.; Tripathi, V.S. An Electromagnetic Band Gap-Based Complementary Split Ring Resonator Loaded Patch Antenna for Glucose Level Measurement. IEEE Sens. J. 2021, 21, 22679–22687. [Google Scholar] [CrossRef]
- Sindhuja, S.; Kanniga, E. Flexible Antenna Sensor in Thumb Spica Splint for Noninvasive Monitoring of Fluctuating Blood Glucose Levels. IEEE Sens. J. 2023, 23, 544–551. [Google Scholar] [CrossRef]
- Kandwal, A.; Li, J.; Igbe, T.; Liu, Y.; Das, R.; Kanaujia, B.K.; Nie, Z. Young’s double slit method-based higher order mode surface plasmon microwave antenna sensor: Modeling, measurements, and application. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Costanzo, S.; Cuccaro, A.; Dell’Aversano, A.; Buonanno, G.; Solimene, R. Microwave Biomedical Sensors with Stable Response: Basic Idea and Preliminary Numerical Assessments for Blood Glucose Monitoring. IEEE Access 2023, 11, 99058–99069. [Google Scholar] [CrossRef]
- Wang, M.; Crocco, L.; Costanzo, S.; Scapaticci, R.; Cavagnaro, M. A compact slot-loaded antipodal vivaldi antenna for a microwave imaging system to monitor liver microwave thermal ablation. IEEE Open J. Antennas Propag. 2022, 3, 700–708. [Google Scholar] [CrossRef]
- Lee, K.; Hassan, A.; Lee, C.; Bae, J. Microstrip Patch Sensor for Salinity Determination. Sensors 2017, 17, 2941. [Google Scholar] [CrossRef] [PubMed]
- Gharbi, M.E.; Martinez-Estrada, M.; Fernandez-Garcia, R.; Gil, I. Determination of Salinity and Sugar Concentration by Means of a Circular-Ring Monopole Textile Antenna-Based Sensor. IEEE Sens. J. 2021, 21, 23751–23760. [Google Scholar] [CrossRef]
- Logeswaran, J.; Rani, R.B. WB Antenna as a Sensor for the Analysis of Dissolved Particles and Water Quality. Prog. Electromagn. Res. Lett. 2022, 106, 31–39. [Google Scholar] [CrossRef]
- Hossain, K.; Cowen, T.; Cheffena, M. Molecularly Imprinted Polymer Based Antenna Sensor for Methanol Vapor Sensing. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 1385–1388. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, H.; Cheng, M.M.C.; Chen, P.Y. Compact, Flexible Harmonic Transponder Sensor With Multiplexed Sensing Capabilities for Rapid, Contactless Microfluidic Diagnosis. IEEE Trans. Microw. Theory Tech. 2020, 68, 4846–4854. [Google Scholar] [CrossRef]
- Adams, J.D.; Emam, S.; Sun, N.; Ma, Y.; Wang, Q.; Shashidhar, R.; Sun, N.X. A molecularly imprinted polymer-graphene sensor antenna hybrid for ultra sensitive chemical detection. IEEE Sens. J. 2019, 19, 6571–6577. [Google Scholar] [CrossRef]
- Zhu, L.; Farhat, M.; Chen, Y.C.; Salama, K.N.; Chen, P.Y. A Compact, Passive Frequency-Hopping Harmonic Sensor Based on a Microfluidic Reconfigurable Dual-Band Antenna. IEEE Sens. J. 2020, 20, 12495–12503. [Google Scholar] [CrossRef]
- Zhu, L.; Alsaab, N.; Cheng, M.M.C.; Chen, P.Y. A Zero-Power Ubiquitous Wireless Liquid-Level Sensor Based on Microfluidic-Integrated Microstrip Antenna. IEEE J. Radio Freq. Identif. 2020, 4, 265–274. [Google Scholar] [CrossRef]
- Javanbakht, N.; Xiao, G.; Amaya, R.E. A Comprehensive Review of Portable Microwave Sensors for Grains and Mineral Materials Moisture Content Monitoring. IEEE Access 2021, 9, 120176–120184. [Google Scholar] [CrossRef]
- Javanbakht, N.; Xiao, G.; Amaya, R. Portable Microwave Sensor Based on Frequency-Selective Surface for Grain Moisture Content Monitoring. IEEE Sens. Lett. 2021, 5, 1–4. [Google Scholar] [CrossRef]
- Zeng, Z.; Huang, L.; Dang, L.; Sai, L.; Chang, Q.; Shi, W. RSSI evaluation model for quantitative power-oriented sensing using an omnidirectional antenna sensor. IEEE Sens. Lett. 2017, 2, 1–4. [Google Scholar] [CrossRef]
- Islam, M.; Ashraf, F.; Alam, T.; Misran, N.; Mat, K. A Compact Ultrawideband Antenna Based on Hexagonal Split-Ring Resonator for pH Sensor Application. Sensors 2018, 18, 2959. [Google Scholar] [CrossRef]
- Zhang, L.; Su, S.; Xu, F.; Ren, T.; Xiong, J. High Sensitivity SIW-CSRR Temperature Sensor Based on Microwave Scattering. IEEE Sens. J. 2023, 23, 13900–13908. [Google Scholar] [CrossRef]
- Sanders, J.W.; Yao, J.; Huang, H. Microstrip patch antenna temperature sensor. IEEE Sens. J. 2015, 15, 5312–5319. [Google Scholar] [CrossRef]
- Yan, D.; Yang, Y.; Hong, Y.; Liang, T.; Yao, Z.; Chen, X.; Xiong, J. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor. Sensors 2018, 18, 532. [Google Scholar] [CrossRef]
- Tariq, R.U.; Ye, M.; Zhao, X.L.; Zhang, S.C.; Cao, Z.; He, Y.N. Microwave Sensor for Detection of Ice Accretion on Base Station Antenna Radome. IEEE Sens. J. 2021, 21, 18733–18741. [Google Scholar] [CrossRef]
- Chung, K.L.; Li, W.; Xie, S.; Song, C.; Zhang, C. A Loop Sensing Antenna for Corrosion Detection of FRP-Strengthened Steel Structure. In Proceedings of the IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, 19–22 May 2019; pp. 1–3. [Google Scholar]
- Yi, Z.; Xue, S.; Xie, L.; Wan, G.; Wan, C. Detection of Setting Time During Cement Hydration Using Multielectromagnetic Parameters of Patch Antenna Sensor. IEEE Trans. Instrum. Meas. 2023, 72, 1–9. [Google Scholar] [CrossRef]
- Jang, S.D.; Kim, J. Passive wireless structural health monitoring sensor made with a flexible planar dipole antenna. Smart Mater. Struct. 2012, 21, 027001. [Google Scholar] [CrossRef]
- Kumar, L.A.; Maheswari, Y.U. Electromagnetic Interference and Electromagnetic Compatibility: Principles, Design, Simulation, and Applications; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Zhang, Y.; Rasmussen, K. Detection of Electromagnetic Interference Attacks on Sensor Systems. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), Francisco, CA, USA, 18–21 May 2020; pp. 203–216. [Google Scholar] [CrossRef]
- Skolnik, M.I. Introduction to Radar Systems; McGraw-Hill: New York, NY, USA, 2001; Volume 19621. [Google Scholar]
- Cassidy, N.J.; Jol, H. Ground penetrating radar data processing, modelling and analysis. Ground Penetrating Radar Theory Appl. 2009, 141–176. [Google Scholar] [CrossRef]
- Gagnadre, I.; Gagnadre, C.; Fenelon, J. Circular patch antenna sensor for moisture content measurement on dielectric material. Electron. Lett. 1995, 31, 1167–1168. [Google Scholar] [CrossRef]
- Siden, J.; Zeng, X.; Unander, T.; Koptyug, A.; Nilsson, H.E. Remote Moisture Sensing utilizing Ordinary RFID Tags. In Proceedings of the 2017 IEEE Sensors, Atlanta, GA, USA, 28–31 October 2007; pp. 308–311. [Google Scholar]
- Bhattacharyya, R.; Floerkemeier, C.; Sarma, S. Towards tag antenna based sensing-An RFID displacement sensor. In Proceedings of the 2009 IEEE International Conference on RFID, Orlando, FL, USA, 27–28 April 2009; pp. 95–102. [Google Scholar]
- Bhattacharyya, R.; Floerkemeier, C.; Sarma, S.; Deavours, D. RFID tag antenna based temperature sensing in the frequency domain. In Proceedings of the 2011 IEEE International Conference on RFID, Sitges, Spain, 15–16 September 2011; pp. 70–77. [Google Scholar]
- Khaleel, H.R.; Al-Rizzo, H.M.; Rucker, D.G.; Mohan, S. A compact polyimide-based UWB antenna for flexible electronics. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 564–567. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Tong, C.; Song, R.; Guan, H.; Yang, Y.; He, D. Conformal metal crack detection sensor based on flexible graphene film antenna. Int. J. RF Microw. Comput.-Aided Eng. 2022, 32, e23172. [Google Scholar] [CrossRef]
- Sayem, S.M.; Esselle, K.P. A Robust, Flexible and Frequency Reconfigurable Antenna with Flexible Superstrate and Substrate. In Proceedings of the International Symposium on Antennas and Propagation (ISAP), Taipei, Taiwan, 19–22 October 2021; pp. 1–2. [Google Scholar]
- Dong, H.; Zhen, C.; Li, X.; Pang, J.; Niu, Y.; Tan, Q.; Xiong, J. Design and Testing of Miniaturized Dual-Band Microstrip Antenna Sensor for Wireless Monitoring of High Temperatures. IEEE Sens. J. 2023, 23, 27242–27250. [Google Scholar] [CrossRef]
- Al-Alem, Y.; Sifat, S.M.; Antar, Y.M.; Kishk, A.A. Millimeter-wave planar antenna array augmented with a low-cost 3D printed dielectric polarizer for sensing and internet of things (IoT) applications. Sci. Rep. 2023, 13, 9646. [Google Scholar] [CrossRef]
- Frolik, J.; Lens, J.E.; Dewoolkar, M.M.; Weller, T.M. Effects of Soil Characteristics on Passive Wireless Sensor Interrogation. IEEE Sens. J. 2018, 18, 3454–3460. [Google Scholar] [CrossRef]
- Carr, A.R.; Patel, Y.H.; Neff, C.R.; Charkhabi, S.; Kallmyer, N.E.; Angus, H.F.; Reuel, N.F. Sweat monitoring beneath garments using passive, wireless resonant sensors interfaced with laser-ablated microfluidics. NPJ Digit. Med. 2020, 3, 62. [Google Scholar] [CrossRef] [PubMed]
- Halmshaw, R.; Halmshaw, R. Basic properties of ionizing radiations. Ind. Radiol. Theory Pract. 1995, 9–32. [Google Scholar] [CrossRef]
- Balanis, C.A. Advanced Engineering Electromagnetics, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Nsengiyumva, W.; Zhong, S.; Wang, B.; Zheng, L.; Zhang, Z.; Zhang, Q.; Zhong, J.; Luo, M.; Peng, Z. Terahertz spectroscopic study of optical and dielectric properties of typical electrical insulation materials. Opt. Mater. 2022, 123, 111837. [Google Scholar] [CrossRef]
- Lee, D.K.; Kang, J.H.; Lee, J.S.; Kim, H.S.; Kim, C.; Hun Kim, J.; Lee, T.; Son, J.H.; Park, Q.H.; Seo, M. Highly sensitive and selective sugar detection by terahertz nano-antennas. Sci. Rep. 2015, 5, 15459. [Google Scholar] [CrossRef] [PubMed]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Bhattacharyya, S.; Dan, M.; Sen, A. Modelling of drop size distribution of rain from rain rate and attenuation measurements at millimeter and optical wavelengths. Int. J. Infrared Millim. Waves 2000, 21, 2065–2075. [Google Scholar] [CrossRef]
- Kou, H.; Tan, Q.; Zhang, L.; Dong, H.; Xiong, J.; Zhang, W. Highly Sensitive Air-Filled Substrate Integrated Waveguide Resonator Integrated Wireless Passive Slot-Antenna for Confined Environmental Detection. IEEE Sens. J. 2019, 19, 10027–10033. [Google Scholar] [CrossRef]
- Alozie, E.; Musa, A.; Faruk, N.; Imoize, A.L.; Abdulkarim, A.; Usman, A.D.; Imam-Fulani, Y.O.; Adewole, K.S.; Oloyede, A.A.; Sowande, O.A.; et al. A review of dust-induced electromagnetic waves scattering theories and models for 5G and beyond wireless communication systems. Sci. Afr. 2023, 21, e01816. [Google Scholar] [CrossRef]
- Bird, T.S. Definition and Misuse of Return Loss [Report of the Transactions Editor-in-Chief]. IEEE Antennas Propag. Mag. 2009, 51, 166–167. [Google Scholar] [CrossRef]
- Tong, Z.; Stelzer, A.; Menzel, W. Improved Expressions for Calculating the Impedance of Differential Feed Rectangular Microstrip Patch Antennas. IEEE Microw. Wirel. Components Lett. 2012, 22, 441–443. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, S.; Li, Q. A Review of Mutual Coupling in MIMO Systems. IEEE Access 2018, 6, 24706–24719. [Google Scholar] [CrossRef]
- Qing, X.; Chen, Z.N. Proximity Effects of Metallic Environments on High Frequency RFID Reader Antenna: Study and Applications. IEEE Trans. Antennas Propag. 2007, 55, 3105–3111. [Google Scholar] [CrossRef]
- DeJean, G.R.; Mercer, S. Antenna environment impacts efficiency and radiation pattern. High Freq. Electron. 2009, 18–27. Available online: https://www.highfrequencyelectronics.com/Aug09/HFE0809_Mercer.pdf (accessed on 23 May 2024).
- Carro, P.L.; de Mingo, J.; García-Dúcar, P.; Valdovinos, A. Statistical antenna proximity effect modeling with uncertainty impedance ellipses. Int. J. Antennas Propag. 2017, 2017, 7192491. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Basics of Measuring the Dielectric Properties of Materials: Application Note. Available online: https://www.keysight.com/zz/en/assets/7018-01284/application-notes/5989-2589.pdf (accessed on 23 May 2024).
- Material Comparison. Available online: https://www.optiprint.ch/de/ (accessed on 23 May 2024).
- Hertleer, C.; Rogier, H.; Vallozzi, L.; Van Langenhove, L. A textile antenna for off-body communication integrated into protective clothing for firefighters. IEEE Trans. Antennas Propag. 2009, 57, 919–925. [Google Scholar] [CrossRef]
- Ullah, M.A.; Islam, M.T.; Alam, T.; Ashraf, F.B. Paper-Based Flexible Antenna for Wearable Telemedicine Applications at 2.4 GHz ISM Band. Sensors 2018, 18, 4214. [Google Scholar] [CrossRef] [PubMed]
- Jilani, S.F.; Munoz, M.O.; Abbasi, Q.H.; Alomainy, A. Millimeter-wave liquid crystal polymer based conformal antenna array for 5G applications. IEEE Antennas Wirel. Propag. Lett. 2018, 18, 84–88. [Google Scholar] [CrossRef]
- Younes, B.; Sagar, M.S.I.; Omi, A.I.; Allison, N.R.; Gedlick, D.; Sekhar, P.K. High temperature antennas: A review. Prog. Electromagn. Res. B 2022, 95, 103–121. [Google Scholar] [CrossRef]
- Chishti, A.R.; Aziz, A.; Qureshi, M.A.; Abbasi, M.N.; Abbasi, D.; Iqbal, S.S.; Zerguine, A.; Algarni, A.M.; Hussain, R. Advances in Antenna-Based Techniques for Detection and Monitoring of Critical Chronic Diseases: A Comprehensive Review. IEEE Access 2023, 11, 104463–104484. [Google Scholar] [CrossRef]
- Huang, H.; Farahanipad, F.; Singh, A.K. A stacked dual-frequency microstrip patch antenna for simultaneous shear and pressure displacement sensing. IEEE Sens. J. 2017, 17, 8314–8323. [Google Scholar] [CrossRef]
- Scattering Parameters. Available online: https://www.antenna-theory.com/definitions/sparameters.php (accessed on 23 May 2024).
- Norouzi, M.; Masoumi, N.; Jahed, H. Nondestructive Phase Variation-Based Chipless Sensing Methodology for Metal Crack Monitoring. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Tang, L.; Xie, F.; Li, Q. A Phase Shift-Based and Quadrant-Distinguishable Passive Microstrip Antenna Sensor for Metal Crack Detection. IEEE Sens. J. 2024, 24, 7796–7806. [Google Scholar] [CrossRef]
- Dai, X.; Fang, L.; Zhang, C.; Sun, H. Design of a Novel Passive Wireless Integrated SAW-Based Antenna Sensor for Structural Health Monitoring. J. Sens. 2020, 2020, 6121907. [Google Scholar] [CrossRef]
- Norouzi, M.; Saha, D.C.; Jahed, H.; Masoumi, N. A Phase Variation-Based Smart Structure for Crack Detection on Metals Using Cold Spray Additive Manufacturing. IEEE Trans. Instrum. Meas. 2023, 72, 8004010. [Google Scholar] [CrossRef]
- Ali Khan, M.U.; Raad, R.; Tubbal, F.; Theoharis, P.I.; Liu, S.; Foroughi, J. Bending analysis of polymer-based flexible antennas for wearable, general IoT applications: A review. Polymers 2021, 13, 357. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.U.A.; Raad, R.; Tubbal, F.; Ioannis Theoharis, P. The impact of bending on radiation characteristics of polymer-based flexible antennas for general IoT applications. Appl. Sci. 2021, 11, 9044. [Google Scholar] [CrossRef]
- Costanzo, S. Non-invasive microwave sensors for biomedical applications: New design perspectives. Radioengineering 2017, 26, 406–410. [Google Scholar] [CrossRef]
- Rappaport, T.S. Wireless Communications: Principles and Practice, 2nd ed.; Prentice Hall PTR: Hoboken, NJ, USA, 1996. [Google Scholar]
- Ye, Z.; Ren, Y.; Yang, M.; Cheng, M.M.C.; Chen, P.Y. Food Quality Monitoring Using A Low-Profile Multiplexed Harmonic Sensor. In Proceedings of the 2023 IEEE Sensors, Vienna, Austria, 29 October–1 November 2023; pp. 1–4. [Google Scholar]
- Mittal, A.; Mirchandani, N.; Michetti, G.; Colombo, L.; Haque, T.; Rinaldi, M.; Shrivastava, A. A ±0.5 dB, 6 nW RSSI circuit with RF power-to-digital conversion technique for ultra-low power IoT radio applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 3526–3539. [Google Scholar] [CrossRef]
- RSSI Feature of the Si443x ISM Transceiver. 9 July 2021. Available online: https://community.silabs.com/s/article/rssi-feature-of-the-si443x-ism-transceiver?language=en_US (accessed on 23 May 2024).
- Iqbal, A.; Smida, A.; Saraereh, O.A.; Alsafasfeh, Q.H.; Mallat, N.K.; Lee, B.M. Cylindrical dielectric resonator antenna-based sensors for liquid chemical detection. Sensors 2019, 19, 1200. [Google Scholar] [CrossRef]
- Hasan, M.N.; Tamanna, S.; Singh, P.; Nadeem, M.D.; Rudramuni, M. Cylindrical dielectric resonator antenna sensor for non-invasive glucose sensing application. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 7–8 March 2019; IEEE: New York, NY, USA, 2019; pp. 961–964. [Google Scholar]
- Srivastava, S.; Gupta, S.; Sachan, V.K.; Saxena, G.; Srikant, S.S. High gain circularly polarized graphene inspired dielectric resonator antenna for 6G IOT THz optical communication and optical refractive index Biosensing applications. Eng. Sci. Technol. Int. J. 2024, 49, 101603. [Google Scholar] [CrossRef]
- Sheen, D.M.; McMakin, D.L.; Hall, T.E. Detection of explosives by millimeter-wave imaging. In Counterterrorist Detection Techniques of Explosives; Elsevier: Amsterdam, The Netherlands, 2007; pp. 237–277. [Google Scholar]
- Hasch, J.; Topak, E.; Schnabel, R.; Zwick, T.; Weigel, R.; Waldschmidt, C. Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans. Microw. Theory Tech. 2012, 60, 845–860. [Google Scholar] [CrossRef]
- Beer, S.; Adamiuk, G.; Zwick, T. Novel antenna concept for compact millimeter-wave automotive radar sensors. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 771–774. [Google Scholar] [CrossRef]
- Menzel, W.; Moebius, A. Antenna concepts for millimeter-wave automotive radar sensors. Proc. IEEE 2012, 100, 2372–2379. [Google Scholar] [CrossRef]
- Pauli, M.; Göttel, B.; Scherr, S.; Bhutani, A.; Ayhan, S.; Winkler, W.; Zwick, T. Miniaturized millimeter-wave radar sensor for high-accuracy applications. IEEE Trans. Microw. Theory Tech. 2017, 65, 1707–1715. [Google Scholar] [CrossRef]
- Sato, H.; Sawaya, K.; Mizuno, K.; Uemura, J.; Takeda, M.; Takahashi, J.; Yamada, K.; Morichika, K.; Hasegawa, T.; Hirai, H.; et al. Passive millimeter-wave imaging for security and safety applications. In Proceedings of the Terahertz Physics, Devices, and Systems IV: Advanced Applications in Industry and Defense, Orlando, FL, USA,, 5–9 April 2010; Volume 7671, pp. 219–229. [Google Scholar]
- Nanzer, J.A. Microwave and Millimeter-Wave Remote Sensing for Security Applications; Artech House: Norwood, MA, USA, 2012. [Google Scholar]
- Du Preez, J.; Sinha, S. Millimeter-Wave Antennas: Configurations and Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Chittimoju, G.; Yalavarthi, U.D. A comprehensive review on millimeter waves applications and antennas. In Proceedings of the Journal of Physics: Conference Series, Coimbatore, India, 25–26 March 2021; Volume 1804, p. 012205. [Google Scholar]
- Chung, M.A.; Lin, C.W.; Lo, W.J. Near Field Sensing Applications with Tunable Beam Millimeter Wave Antenna Sensors in an All-in-One Chip Design. Electronics 2022, 11, 2231. [Google Scholar] [CrossRef]
- Papotto, G.; Parisi, A.; Finocchiaro, A.; Nocera, C.; Cavarra, A.; Castorina, A.; Palmisano, G. CMOS IC Solutions for the 77 GHz Radar Sensor in Automotive Applications. Electronics 2024, 13, 2104. [Google Scholar] [CrossRef]
- Soumya, A.; Krishna Mohan, C.; Cenkeramaddi, L.R. Recent Advances in mmWave-Radar-Based Sensing, Its Applications, and Machine Learning Techniques: A Review. Sensors 2023, 23, 8901. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.; Abbott, D. High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sens. J. 2013, 14, 1345–1351. [Google Scholar] [CrossRef]
- Khanna, Y.; Awasthi, Y. Dual-band microwave sensor for investigation of liquid impurity concentration using a metamaterial complementary split-ring resonator. J. Electron. Mater. 2020, 49, 385–394. [Google Scholar] [CrossRef]
- Khan, O.M.; Islam, Z.U.; Islam, Q.U.; Bhatti, F.A. Multiband high-gain printed Yagi array using square spiral ring metamaterial structures for S-band applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1100–1103. [Google Scholar] [CrossRef]
- Jilani, M.T.; Wen, W.P.; Cheong, L.Y.; Ur Rehman, M.Z. A microwave ring-resonator sensor for non-invasive assessment of meat aging. Sensors 2016, 16, 52. [Google Scholar] [CrossRef] [PubMed]
- Rusni, I.M.; Ismail, A.; Alhawari, A.R.H.; Hamidon, M.N.; Yusof, N.A. An aligned-gap and centered-gap rectangular multiple split ring resonator for dielectric sensing applications. Sensors 2014, 14, 13134–13148. [Google Scholar] [CrossRef]
- Lee, C.S.; Yang, C.L. Single-compound complementary split-ring resonator for simultaneously measuring the permittivity and thickness of dual-layer dielectric materials. IEEE Trans. Microw. Theory Tech. 2015, 63, 2010–2023. [Google Scholar] [CrossRef]
- Kiani, S.; Rezaei, P.; Navaei, M. Dual-sensing and dual-frequency microwave SRR sensor for liquid samples permittivity detection. Measurement 2020, 160, 107805. [Google Scholar] [CrossRef]
- Mohd Bahar, A.A.; Zakaria, Z.; Md. Arshad, M.; Isa, A.; Dasril, Y.; Alahnomi, R.A. Real time microwave biochemical sensor based on circular SIW approach for aqueous dielectric detection. Sci. Rep. 2019, 9, 5467. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Bai, B.; Song, Q.R.; Wang, Z.Q.; Li, G.F. Open complementary split-ring resonator sensor for dropping-based liquid dielectric characterization. IEEE Sens. J. 2019, 19, 11880–11890. [Google Scholar] [CrossRef]
- Rowe, D.J.; Al-Malki, S.; Abduljabar, A.A.; Porch, A.; Barrow, D.A.; Allender, C.J. Improved split-ring resonator for microfluidic sensing. IEEE Trans. Microw. Theory Tech. 2014, 62, 689–699. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Tuantranont, A.; Fumeaux, C.; Abbott, D. Metamaterial-based microfluidic sensor for dielectric characterization. Sens. Actuators A Phys. 2013, 189, 233–237. [Google Scholar] [CrossRef]
- Rocco, G.M.; Bozzi, M.; Schreurs, D.; Perregrini, L.; Marconi, S.; Alaimo, G.; Auricchio, F. 3-D printed microfluidic sensor in SIW technology for liquids’ characterization. IEEE Trans. Microw. Theory Tech. 2019, 68, 1175–1184. [Google Scholar] [CrossRef]
- Abduljabar, A.A.; Rowe, D.J.; Porch, A.; Barrow, D.A. Novel microwave microfluidic sensor using a microstrip split-ring resonator. IEEE Trans. Microw. Theory Tech. 2014, 62, 679–688. [Google Scholar] [CrossRef]
- Khan, O.M.; Islam, Z.U.; Rashid, I.; Bhatti, F.A.; Islam, Q.U. Novel miniaturized Koch pentagonal fractal antenna for multiband wireless applications. Prog. Electromagn. Res. 2013, 141, 693–710. [Google Scholar] [CrossRef]
- Islam, Z.U.; Rahman, M.; Muhammad, N.; Ahmed, Z.; Lodhi, F.K.; Haneef, M. Dual band second order modified Sierpinski monopole reduced size fractal antenna. In Proceedings of the 2016 International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, 18–19 October 2016; pp. 1–5. [Google Scholar]
- Yin, A.; Zhang, C.; Luo, J.; Liu, J.; Ren, Z.; Wang, Y.; Ye, Y.; Yin, R.; Feng, Q.; Chen, Y.; et al. A highly sensitive and miniaturized wearable antenna based on MXene films for strain sensing. Mater. Adv. 2023, 4, 917–922. [Google Scholar] [CrossRef]
- Sindhu, B.; Adepu, V.; Sahatiya, P.; Nandi, S. An MXene based flexible patch antenna for pressure and level sensing applications. FlatChem 2022, 33, 100367. [Google Scholar] [CrossRef]
- Clerckx, B.; Huang, K.; Varshney, L.R.; Ulukus, S.; Alouini, M.S. Wireless power transfer for future networks: Signal processing, machine learning, computing, and sensing. IEEE J. Sel. Top. Signal Process. 2021, 15, 1060–1094. [Google Scholar] [CrossRef]
- Toro, U.S.; ElHalawany, B.M.; Wong, A.B.; Wang, L.; Wu, K. Machine-learning-assisted signal detection in ambient backscatter communication networks. IEEE Netw. 2021, 35, 120–125. [Google Scholar] [CrossRef]
- Mahinnezhad, S.; Emami, H.; Ketabi, M.; Al Shboul, A.; Belkhamssa, N.; Shih, A.; Izquierdo, R. Fully printed pH sensor based in carbon black/polyaniline nanocomposite. In Proceedings of the 2021 IEEE Sensors, Sydney, Australia, 31 October–3 November 2021; pp. 1–4. [Google Scholar]
- Cheng, T.; Liu, C.; Ding, W. Weak signal detection based on deep learning. In Proceedings of the 2019 4th International conference on Multimedia Systems and Signal Processing, Guangzhou, China, 10–12 May 2019; pp. 114–118. [Google Scholar]
- Tchafa, F.M.; Huang, H. Microstrip patch antenna for simultaneous temperature sensing and superstrate characterization. Smart Mater. Struct. 2019, 28, 105009. [Google Scholar] [CrossRef]
- Wang, S.; Mei, L.; Liu, R.; Jiang, W.; Yin, Z.; Deng, X.; He, T. Multi-Modal Fusion Sensing: A Comprehensive Review of Millimeter-Wave Radar and Its Integration With Other Modalities. IEEE Commun. Surv. Tutor. 2024. [Google Scholar] [CrossRef]
Substrate Material | Dielectric Constant | Loss Tangent (δ) | Supplier |
---|---|---|---|
RT/duroid 5880 | 2.2 | 0.0009 | Rogers |
TLX-9 | 2.5 | 0.0019 | Taconic |
AD 255C | 2.55 | 0.0014 | Arlon |
GML 1000 | 3.2 | 0.004 | GIL |
RO4003 | 3.38 | 0.0029 | Rogers |
TLF-34 | 3.4 | 0.0020 | Taconic |
AD 350A | 3.50 | 0.0030 | Arlon |
FR402 | 4.25 | 0.016 | Isola |
References | Resonator Sensor | Frequency (GHz) | Normalized Sensitivity (%) | Measurand |
---|---|---|---|---|
[111] | SRR | 1.72 | 0.78 | Microfluidic sensing |
[112] | SRR | 2.1 | 0.091 | Dielectric characterization |
[113] | SIW | 0.0014 | 0.15 | chemical sensing |
[110] | CSRR | 0.33 | 0.504 | Liquid sensing |
[114] | SRR | 3 | 0.026 | Liquid sensing |
[109] | SIW | 4.4 | 0.044 | Biochemical sensing |
[102] | CSRR | 2.4 | 0.31 | Dielectric characterization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, Z.U.; Bermak, A.; Wang, B. A Review of Microstrip Patch Antenna-Based Passive Sensors. Sensors 2024, 24, 6355. https://doi.org/10.3390/s24196355
Islam ZU, Bermak A, Wang B. A Review of Microstrip Patch Antenna-Based Passive Sensors. Sensors. 2024; 24(19):6355. https://doi.org/10.3390/s24196355
Chicago/Turabian StyleIslam, Zain Ul, Amine Bermak, and Bo Wang. 2024. "A Review of Microstrip Patch Antenna-Based Passive Sensors" Sensors 24, no. 19: 6355. https://doi.org/10.3390/s24196355
APA StyleIslam, Z. U., Bermak, A., & Wang, B. (2024). A Review of Microstrip Patch Antenna-Based Passive Sensors. Sensors, 24(19), 6355. https://doi.org/10.3390/s24196355