A Temperature-Robust Envelope Detector Receiving OOK-Modulated Signals for Low-Power Applications
Abstract
:1. Introduction
2. State-of-the-Art Passive EDs with Temperature Compensation
3. ED and PTAT Block Description
3.1. ED Model and Receiving Chain Sensitivity Optimization
3.2. Temperature Compensation through the PTAT Block
3.3. ED Differential Approach
3.4. Maximum Input Power
4. Implementation Criteria
4.1. Parameter Optimization
- High L in and for good mirroring.
- High W in and for low to make room for and .
- and highest possible allowed by the technology considering area occupation to minimize the static current of the PTAT block.
- Lowest possible for effectively cutting the chosen carrier RF frequency.
- Lowest possible and for effectively coupling the input signal to the internal diode nodes at the chosen carrier RF frequency.
4.2. Two Implemented Versions
4.2.1. Version 1, Minimal Mismatch
4.2.2. Version 2, Minimal Area
4.3. Temperature Compensation Validation
4.4. Implementation Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ED | Envelope Detector |
OOK | On–Off Keying |
WuRX | Wake-Up Radio Receivers |
IoT | Internet of Things |
PTAT | Proportional-to-Absolute Temperature |
MOSFET | Metal-Oxide-Semiconductor Field-Effect Transistor |
SNR | Signal-to-Noise Ratio |
NF | Noise Figure |
References
- Mercier, P.; Calhoun, B.; Wang, P.-H.; Dissanayake, A.; Zhang, L.; Hall, D.; Bowers, S. Low-Power RF Wake-Up Receivers: Analysis, Tradeoffs, and Design. IEEE Open J. Solid-State Circuits Soc. 2022, 2, 144–164. [Google Scholar] [CrossRef]
- Kandris, D.; Nakas, C.; Vomvas, D.; Koulouras, G. Applications of Wireless Sensor Networks: An Up-to-Date Survey. Appl. Syst. Innov. 2020, 3, 14. [Google Scholar] [CrossRef]
- Pizzotti, M.; Perilli, L.; Del Prete, M.; Fabbri, D.; Canegallo, R.; Dini, M.; Masotti, D.; Costanzo, A.; Franchi Scarselli, E.; Romani, A. A Long-Distance RF-Powered Sensor Node with Adaptive Power Management for IoT Applications. Sensors 2017, 17, 1732. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Eshraghian, J.K.; Iu, H.C.; Cho, K. Low-Power Wireless Sensor Network Using Fine-Grain Control of Sensor Module Power Mode. Sensors 2021, 21, 3198. [Google Scholar] [CrossRef] [PubMed]
- Perilli, L.; Scarselli, E.F.; La Rosa, R.; Canegallo, R. Wake-Up Radio Impact in Self-Sustainability of Sensor and Actuator Wireless Nodes in Smart Home Applications. In Proceedings of the 2018 Ninth International Green and Sustainable Computing Conference (IGSC), Pittsburgh, PA, USA, 22–24 October 2018. [Google Scholar]
- Polonelli, T.; Niculescu, V.; Burger, T.; Magno, M. A −79 dBm μ-Watt Wake-Up Receiver for Energy Efficient ISM and LoRa Communication. In Proceedings of the 2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 20–23 May 2024. [Google Scholar]
- D’Addato, M.; Elgani, A.M.; Perilli, L.; Franchi Scarselli, E.; Gnudi, A.; Canegallo, R.; Ricotti, G. A Gated Oscillator Clock and Data Recovery Circuit for Nanowatt Wake-Up and Data Receivers. Electronics 2021, 10, 780. [Google Scholar] [CrossRef]
- Taris, T.; Kraimia, H.; Belot, D.; Deval, Y. An FSK and OOK Compatible RF Demodulator for Wake Up Receivers. J. Low Power Electron. Appl. 2015, 5, 274–290. [Google Scholar] [CrossRef]
- Zaraket, E.; Murad, N.M.; Yazdani, S.S.; Rajaoarisoa, L.; Ravelo, B. An overview on low energy wake-up radio technology: Active and passive circuits associated with MAC and routing protocols. J. Netw. Comput. Appl. 2021, 190, 103140. [Google Scholar] [CrossRef]
- Elgani, A.M.; Renzini, F.; Perilli, L.; Franchi Scarselli, E.; Gnudi, A.; Canegallo, R.; Ricotti, G. A Clockless Temperature-Compensated Nanowatt Analog Front-End for Wake-Up Radios Based on a Band-Pass Envelope Detector. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2612–2624. [Google Scholar] [CrossRef]
- Elgani, A.M.; D’Addato, M.; Perilli, L.; Franchi Scarselli, E.; Canegallo, R. Design and Characterization of an Active Low-Pass Envelope Detector for Wake-Up Radio Receivers. In Proceedings of the 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), Villasimius, Italy, 12–15 June 2022. [Google Scholar]
- Mangal, V.; Kinget, P. Sub-nW Wake-Up Receivers With Gate-Biased Self-Mixers and Time-Encoded Signal Processing. IEEE J. Solid-State Circuits 2019, 54, 3513–3524. [Google Scholar] [CrossRef]
- Moody, J.; Bassirian, P.; Roy, A.; Liu, N.; Barker, S.; Calhoun, B.; Bowers, S. Interference Robust Detector-First Near-Zero Power Wake-Up Receiver. IEEE J. Solid-State Circuits 2019, 54, 2149–2162. [Google Scholar] [CrossRef]
- Dissanayake, A.; Moody, J.; Bishop, H.; Truesdell, D.; Muhlbauer, H.; Lu, R.; Gao, A.; Gong, S.; Calhoun, B.; Bowers, S. A −108 dBm Sensitivity, −28 dB SIR, 130 nW to 41 μW, Digitally Reconfigurable Bit-Level Duty-Cycled Wakeup and Data Receiver. In Proceedings of the 2020 IEEE Custom Integrated Circuits Conference (CICC), Boston, MA, USA, 22–25 March 2020. [Google Scholar]
- Liu, L.; Xie, S.; Liao, X.; Qin, Z.; Wang, J. A 0.3-V, —75.8-dBm Temperature-Robust Differential Wake-Up Receiver for WSNs. Sensors 2022, 22, 20593–20602. [Google Scholar] [CrossRef]
- Mangal, V.; Kinget, P. An ultra-low-power wake-up receiver with voltage-multiplying self-mixer and interferer-enhanced sensitivity. In Proceedings of the 2017 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 30 April–3 May 2017. [Google Scholar]
- Jiang, H.; Wang, P.-H.; Gao, L.; Pochet, C.; Rebeiz, G.; Hall, D.; Mercier, P. A 22.3-nW, 4.55 cm2 Temperature-Robust Wake-Up Receiver Achieving a Sensitivity of —69.5 dBm at 9 GHz. IEEE J. Solid-State Circuits 2020, 55, 1530–1541. [Google Scholar] [CrossRef]
- Shen, X.; Duvvuri, D.; Bassirian, P.; Bishop, H.; Liu, X.; Dissanayake, A.; Zhang, Y.; Blalock, T.; Calhoun, B.; Bowers, S. A 184-nW, —78.3-dBm Sensitivity Antenna-Coupled Supply, Temperature, and Interference-Robust Wake-Up Receiver at 4.9 GHz. IEEE Trans. Microw. Theory Tech. 2022, 70, 744–757. [Google Scholar] [CrossRef]
- Huang, K.-K.; Brown, J.; Collins, N.; Sawyer, R.; Yahya, F.; Wang, A.; Roberts, N.; Calhoun, B.; Wentzloff, D. A Fully Integrated 2.7 μW —70.2 dBm-Sensitivity Wake-Up Receiver with Charge-Domain Analog Front-End, —16.5 dB-SIR, FEC and Cryptographic Checksum. In Proceedings of the 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021. [Google Scholar]
- Liao, X.; Xie, S.; Xu, J.; Liu, L. A 0.4 V, 6.4 nW, —75 dBm Sensitivity Fully Differential Wake-Up Receiver for WSNs Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 2794–2804. [Google Scholar] [CrossRef]
- Fromm, R.; Kanoun, O.; Derbel, F. An Improved Wake-Up Receiver Based on the Optimization of Low-Frequency Pattern Matchers. Sensors 2023, 23, 8188. [Google Scholar] [CrossRef] [PubMed]
- D’Addato, M.; Elgani, A.M.; Perilli, L.; Franchi Scarselli, E.; Gnudi, A.; Canegallo, R.; Ricotti, G. A 54.8-nW, 256-bit Codeword Temperature-Robust Wake-Up Receiver minimizing False Wake-Ups for Ultra-Low-Power IoT Systems. In Proceedings of the 2022 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Glasgow, UK, 24–26 October 2022. [Google Scholar]
- Pelgrom, M.J.M.; Duinmaijer, A.C.J.; Welbers, A.P.G. Matching properties of MOS transistors. IEEE J. Solid-State Circuits 1989, 24, 1433–1439. [Google Scholar] [CrossRef]
This Paper | [15] | [17] | [18] | [19] | |
---|---|---|---|---|---|
at 20 °C [dBl | −66.1/−68.9 | −76.3 | −62.5 | −72.4 | −70.2 |
for [dB] | 4.6 | 3.9 | 3 | 2.5 | N/A |
[°C] | −40 | −10 | −10 | −30 | −40 |
[°C] | 120 | 50 | 40 | 70 | 85 |
FoM= [°C/dB] | 34.8 | 15.4 | 16.7 | 40 | N/A |
ED input resistance | |
ED input capacitance | |
Matching network gain | |
Single-ended ED output voltage | |
ED delay | |
Sensitivity |
Version 1 | Version 2 | |
---|---|---|
Target bitrate [kbit/s] | 1 | 1 |
Power consumption at 20 °C [nW] | 6 | 14 |
Diode dimensions [nm] | (450 × 2)/450 | 120/100 |
Coupling capacitances [fF] | 36 | 13 |
[pF] | 3 | 1.9 |
at 20 °C [k] | 10.7 | 10 |
for −40 ÷ 120 °C [k] | 24 | 13.7 |
at 20 °C [dBm] | −66.1 | −68.9 |
for −40 ÷ 120 °C [dB] | 4.6 | 4.6 |
at 120 °C [dB] | 0.4 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elgani, A.M.; D’Addato, M.; Perilli, L.; Franchi Scarselli, E.; Gnudi, A.; Canegallo, R.; Ricotti, G. A Temperature-Robust Envelope Detector Receiving OOK-Modulated Signals for Low-Power Applications. Sensors 2024, 24, 6369. https://doi.org/10.3390/s24196369
Elgani AM, D’Addato M, Perilli L, Franchi Scarselli E, Gnudi A, Canegallo R, Ricotti G. A Temperature-Robust Envelope Detector Receiving OOK-Modulated Signals for Low-Power Applications. Sensors. 2024; 24(19):6369. https://doi.org/10.3390/s24196369
Chicago/Turabian StyleElgani, Alessia Maria, Matteo D’Addato, Luca Perilli, Eleonora Franchi Scarselli, Antonio Gnudi, Roberto Canegallo, and Giulio Ricotti. 2024. "A Temperature-Robust Envelope Detector Receiving OOK-Modulated Signals for Low-Power Applications" Sensors 24, no. 19: 6369. https://doi.org/10.3390/s24196369
APA StyleElgani, A. M., D’Addato, M., Perilli, L., Franchi Scarselli, E., Gnudi, A., Canegallo, R., & Ricotti, G. (2024). A Temperature-Robust Envelope Detector Receiving OOK-Modulated Signals for Low-Power Applications. Sensors, 24(19), 6369. https://doi.org/10.3390/s24196369