Time Series Prediction of Gas Emission in Coal Mining Face Based on Optimized Variational Mode Decomposition and SSA-LSTM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Variational Mode Decomposition (VMD)
2.2. Variational Mode Decomposition Based on Genetic Algorithm Optimization
2.3. GA Optimizing VMD
2.4. Sparrow Search Algorithm to Optimize Long and Short-Term Memory Networks’ Long Short-Term Memories (LSTM)s
2.5. SSA Optimizing LSTM
2.6. Construction of GA-VMD-LSTM Prediction Model
3. Results and Discussion
3.1. Data INTERPOLATION
3.2. VMD Decomposition of Gas Emission Data
3.3. Prediction of Gas Emission
3.4. Comparative Analysis of Prediction Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, H.; Yu, X.; LU, W. Based on Ant Colony and Particle Swarm Hybrid Algorithm and LS-SVM Gas Emission Prediction. J. Transduct. Technol. 2016, 29, 373–377. [Google Scholar]
- Huang, W.; Tong, M.; Ren, Z. Nonlinear Combination Prediction Method of Gas Emission Based on SVM. J. China Univ. Min. Technol. 2009, 38, 234–239. [Google Scholar]
- Fu, H.; Xie, S.; Xu, Y.; Chen, Z. Research on dynamic prediction model of coal mine gas emission based on ACC-ENN algorithm. J. China Coal Soc. 2014, 39, 1296–1301. [Google Scholar]
- Zhang, L.; Qin, Y.; Jiang, W.; Jing, H.; Zhao, G. Research status and prospects of mine gas emission prediction methods in my country. Saf. Coal Mines 2007, 38, 58–60. [Google Scholar]
- Fan, B.; Bai, C.; Li, J. Prediction of gas emission from coal mining face based on LMD-SVM. J. Min. Saf. Eng. 2013, 30, 946–952. [Google Scholar]
- Fu, H.; Xie, S.; Xu, Y.; Chen, Z. Research on prediction model of mine gas emission based on MPSO-WLS-SVM. Chin. Saf. Sci. J. 2013, 23, 56–61. [Google Scholar]
- Dong, X.; Jia, J.; Bai, Y.; Fan, C. Prediction of gas emission from coal mining face based on SVM coupled genetic algorithm. J. Saf. Environ. 2016, 16, 114–118. [Google Scholar]
- Feng, S.; Shao, L.; LU, W.; Meng, T.; Gao, Z. Application of PCA-PSO-LSSVM Model in Gas Emission Prediction. J. Liaoning Technol. Univ. (Nat. Sci.) 2019, 38, 124–129. [Google Scholar]
- Wang, Y. Gas emission prediction based on PCA-PSO-ELM. J. Hunan Univ. Sci. Technol. (Nat. Sci. Ed.) 2020, 35, 1–9. [Google Scholar]
- Zhang, Q.; Jia, B.; Dong, X.; Li, Z. Prediction of gas emission in mining face by PCA-GA-SVM. J. Liaoning Technol. Univ. (Nat. Sci.) 2015, 34, 572–577. [Google Scholar]
- Xiang, P.; Xie, X.; Shuang, H.; Liu, C.; Wang, H.; Xu, J. Research on Gas Emission Prediction Based on KPCA-CMGANN Algorithm. China Saf. Sci. J. 2020, 30, 39–47. [Google Scholar]
- Wang, L.; Liu, Y.; Liu, Z.; Qi, J. Research on Gas Emission Prediction Model Based on IABC-LSSVM. Sens. Microsyst. 2022, 41, 34–38. [Google Scholar]
- Huang, W.; Shi, S. Gas gushing time series prediction based on improved Lyapunov index. J. China Coal Soc. 2009, 34, 1665–1668. [Google Scholar]
- Dan, Y.; Hou, F.; Fu, H.; Ma, J. Prediction of Gas Emission in Chaotic Time Series Based on Improved Extreme Learning Machine. China Saf. Sci. J. 2012, 22, 58–63. [Google Scholar]
- Liu, J.; An, F.; Lin, D.; Guo, Z.; Zhang, L. Natural mode SVM modeling and prediction of gas emission from coal mining face. Syst. Eng. Theory Pract. 2013, 33, 505–511. [Google Scholar]
- Lu, G.; Li, X.; Zu, B.; Dong, J. Research on time-varying sequence prediction of gas emission based on EMD-MFOA-ELM. J. Saf. Sci. Technol. 2017, 13, 109–114. [Google Scholar]
- Dai, W.; Fu, H.; Ji, C. VMD-DE-RVM interval prediction method for gas emission in mining face. China Saf. Sci. J. 2018, 28, 109–115. [Google Scholar]
- Xiao, P.; Xie, H.; Shuang, H.; Liu, C.; Xu, J.; Hong, J. Application of Wavelet-Extreme Learning Machine in Time-varying Sequence Prediction of Gas Emission. J. Xi’an Univ. Sci. Technol. 2020, 40, 839–845. [Google Scholar]
- Zhan, G.; Wang, Y.; Fu, H.; Wang, S. Prediction of Gas Emission Based on Variational Mode Decomposition and Deep Integration Combination Model. Control Eng. China 2022, 29, 1–12. [Google Scholar]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, P.; Wang, D.; Wang, S. Short-term wind speed prediction of wind farms based on variational mode decomposition and LSSVM. Acta Energiae Solaris Sin. 2018, 39, 194–202. [Google Scholar]
- Zhang, S.; Su, X.; Chen, R.; Liu, W.; Zuo, Y.; Zhang, Q. Short-term power load forecasting based on variational modal decomposition and FABP. Chin. J. Sci. Instrum. 2018, 39, 67–73. [Google Scholar]
- Balakrishnan, R.; Geetha, V.; Kumar, M.R.; Leung, M.-F.; Lucchi, E. Reduction in Residential Electricity Bill and Carbon Dioxide Emission through Renewable Energy Integration Using an Adaptive Feed-Forward Neural Network System and MPPT Technique. Sustainability 2023, 15, 14088. [Google Scholar] [CrossRef]
- Ma, H.; Tong, Q.; Zhang, Y. Application of Variational Mode Decomposition of Optimization Parameters in Fault Diagnosis of Rolling Bearings. China Mech. Eng. 2018, 29, 390–397. [Google Scholar]
- Zhang, S.; Li, J.; Jiang, A.; Huang, J.; Liu, H.; Ai, H. Novel two-stage short-term power load forecasting based on FPA-VMD and BiLSTM neural network. Power Syst. Technol. 2022, 46, 3269–3279. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Q. CNN-LSTM ultra-short-term power load forecasting based on cluster empirical mode decomposition. Power Syst. Technol. 2021, 45, 4444–4451. [Google Scholar]
- Meng, A.; Xu, X.; Chen, J.; Wang, C.; Zhou, T.; Yin, H. Ultra-short-term photovoltaic power prediction based on reinforcement learning and combined deep learning model. Power Syst. Technol. 2021, 45, 4721–4728. [Google Scholar]
- Hao, S.; He, T.; Ma, X.; Zhang, X.; Wu, Y.; Wang, H. KDBiDet: A Bi-Branch Collaborative Training Algorithm Based on Knowledge Distillation for Photovoltaic Hot-Spot Detection Systems. IEEE Trans. Instrum. Meas. 2024, 73, 3504615. [Google Scholar] [CrossRef]
- Liu, J.; Quan, H.; Yu, X.; He, K.; Li, Z. Fault diagnosis of rolling bearing based on parameter optimization VMD and sample entropy. Acta Autom. Sin. 2022, 48, 808–819. [Google Scholar]
- Chen, C.; Li, X.; Yang, L.; Qu, H.; Wang, Y.; He, C. Application of Variational Mode Decomposition in Power System Harmonic Detection. Power Syst. Prot. Control 2018, 46, 63–70. [Google Scholar]
- Yang, D.; Feng, F.; Zhao, Y.; Jiang, P.; Ding, C. VMD sample entropy feature extraction method and its application in planetary gearbox fault diagnosis. J. Vib. Shock 2018, 37, 198–205. [Google Scholar]
- Zhao, X.; Zhang, S.; Li, Z.; Li, F.; Hu, Y. Fault feature signal extraction method based on VMD. J. Vib. Meas. Diagn. 2018, 38, 11–19, 202. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Chen, Q.; Wang, X. Comparative Research on Several New Swarm Intelligence Optimization Algorithms. Comput. Eng. Appl. 2020, 56, 1–12. [Google Scholar] [CrossRef]
- Zhao, H.; Shen, X.; Lv, L.; Lan, P.; Liu, J.; Liu, D. Load data restoration based on GAN and its application in short-term load forecasting of EV. Autom. Electr. Power Syst. 2021, 45, 143–151. [Google Scholar]
- Ma, Z.; Li, Y.; Liu, Z.; Gu, C. Fault Feature Extraction of Rolling Bearing Based on Variational Mode Decomposition and Teager Energy Operator. J. Vib. Shock 2016, 35, 134–139. [Google Scholar]
Serial Number | Time | Class | Gas Ventilation Volume/(m3·min−1) | Gas Drainage Volume/(m3·min−1) | Absolute Gas Emission Quantity/(m3·min−1) |
---|---|---|---|---|---|
1 | 1/26 | 16 | 5.25 | 10.91 | 16.16 |
2 | 1/27 | 0 | 5.51 | 12.17 | 17.68 |
3 | 1/27 | 8 | 4.99 | 12.70 | 17.69 |
4 | 1/27 | 16 | 5.51 | 12.10 | 17.61 |
5 | 1/28 | 0 | 6.30 | 14.59 | 20.89 |
…… | …… | …… | …… | …… | |
280 | 4/29 | 8 | 3.15 | 11.44 | 14.59 |
281 | 4/29 | 16 | 3.15 | 10.93 | 14.08 |
282 | 4/30 | 0 | 3.38 | 11.35 | 14.73 |
284 | 4/30 | 8 | 2.93 | 10.99 | 13.92 |
283 | 4/30 | 16 | 4.05 | 11.81 | 15.86 |
Serial Number | Time | Class | Absolute Gas Emission Quantity/(m3·min−1) |
---|---|---|---|
23 | 2/3 | 0 | 23.22 |
61 | 2/15 | 16 | 26.66 |
62 | 2/16 | 0 | 27.14 |
64 | 2/16 | 16 | 31.95 |
65 | 2/17 | 0 | 31.85 |
72 | 2/19 | 8 | 27.59 |
75 | 2/20 | 8 | 30.04 |
Mean Square Error of Different Interpolation Methods | ||||
---|---|---|---|---|
Absence Rate/% | EM Algorithm Imputation | Mean Imputation | linear Interpolation | Random Forest Imputation |
5 | 2.30 | 3.04 | 0.11 | 3.47 |
10 | 1.28 | 1.78 | 0.13 | 1.81 |
15 | 1.13 | 1.42 | 0.16 | 1.48 |
sor | 1.53 | 1.66 | 0.39 | 1.84 |
25 | 1.48 | 1.81 | 0.41 | 2.00 |
30 | 1.62 | 2.20 | 0.39 | 2.14 |
Serial Number | Time | Class | Absolute Gas Emission Quantity/(m3·min−1) |
---|---|---|---|
23 | 2/3 | 0 | 21.41 |
61 | 2/15 | 16 | 23.99 |
62 | 2/16 | 0 | 23.50 |
64 | 2/16 | 16 | 22.46 |
65 | 2/17 | 0 | 21.92 |
72 | 2/19 | 8 | 24.00 |
75 | 2/20 | 8 | 23.73 |
Serial Number | Actual Value (m3·min−1) | VMD Decomposition Reconstruction Value (m3·min−1) | |||
---|---|---|---|---|---|
k = 3 | k = 5 | k = 8 | k = 10 | ||
1 | 16.16 | 16.16 | 14.13 | 15.18 | 16.10 |
2 | 17.68 | 17.68 | 17.27 | 17.26 | 17.52 |
3 | 17.69 | 17.69 | 15.60 | 17.61 | 17.56 |
4 | 17.61 | 17.61 | 18.91 | 18.48 | 17.87 |
5 | 20.89 | 20.89 | 20.78 | 20.64 | 20.87 |
…… | …… | …… | …… | …… | …… |
280 | 14.59 | 14.69 | 14.92 | 14.79 | 14.66 |
281 | 14.08 | 15.23 | 14.85 | 14.77 | 14.17 |
282 | 14.73 | 15.29 | 15.45 | 15.28 | 14.87 |
284 | 13.92 | 14.64 | 14.72 | 14.32 | 14.07 |
283 | 15.86 | 15.37 | 15.53 | 16.05 | 16.04 |
Decomposed Component | Num Hidden Units | Max Epochs | InitialLearnRate | L2 Regularization |
---|---|---|---|---|
IMF1 | 161 | 255 | 0.0319 | 0.0284 |
IMF2 | 98 | 54 | 0.0631 | 0.0604 |
IMF3 | 200 | 81 | 0.0081 | 0.0001 |
IMF4 | 21 | 16 | 0.7578 | 0.8235 |
IMF5 | 36 | 30 | 0.1323 | 0.1069 |
IMF6 | 115 | 25 | 0.0118 | 0.0001 |
IMF7 | 30 | 73 | 0.0001 | 0.0001 |
IMF8 | 12 | 25 | 0.0001 | 0.0001 |
IMF9 | 6 | 9 | 0.0011 | 0.0010 |
IMF10 | 200 | 60 | 0.0116 | 0.0001 |
GVSL Forecasting Model | Absolute Error (m3·min−1) | ||
---|---|---|---|
Minimum Value | Maximum Value | Mean Value | |
IMF1 | 0.0009 | 0.0266 | 0.0152 |
IMF2 | 0.0178 | 0.0808 | 0.0460 |
IMF3 | 0.0003 | 0.0426 | 0.0146 |
IMF4 | 0.0002 | 0.0648 | 0.0140 |
IMF5 | 0 | 0.0999 | 0.0348 |
IMF6 | 0 | 0.0583 | 0.0218 |
IMF7 | 0.0005 | 0.0307 | 0.0109 |
IMF8 | 0.0006 | 0.0399 | 0.0144 |
IMF9 | 0.0002 | 0.0254 | 0.0083 |
IMF10 | 0.0010 | 0.0189 | 0.0047 |
Evaluating Indicator | GVSL | VMD-LSTM | SSA-LSTM | GPR | |
---|---|---|---|---|---|
Scenario one | MAE | 0.27 | 0.60 | 0.65 | 0.77 |
MAPE/% | 1.72 | 3.82 | 4.27 | 5.14 | |
RMSE | 0.31 | 0.72 | 0.83 | 0.88 | |
R2 | 0.95 | 0.74 | 0.67 | 0.68 | |
Scenario two | MAE | 0.18 | 0.52 | 0.73 | 0.68 |
MAPE/% | 1.16 | 3.50 | 4.76 | 4.56 | |
RMSE | 0.22 | 0.61 | 0.97 | 0.77 | |
R2 | 0.96 | 0.74 | 0.34 | 0.65 | |
Scenario three | MAE | 0.11 | 0.30 | 0.37 | 0.39 |
MAPE/% | 0.71 | 1.91 | 2.33 | 2.62 | |
RMSE | 0.14 | 0.41 | 0.53 | 0.44 | |
R2 | 0.99 | 0.88 | 0.80 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Cui, Y.; Yan, Z.; Huang, Y.; Zhang, C.; Zhang, J.; Guo, J.; Zhao, F. Time Series Prediction of Gas Emission in Coal Mining Face Based on Optimized Variational Mode Decomposition and SSA-LSTM. Sensors 2024, 24, 6454. https://doi.org/10.3390/s24196454
Zhang J, Cui Y, Yan Z, Huang Y, Zhang C, Zhang J, Guo J, Zhao F. Time Series Prediction of Gas Emission in Coal Mining Face Based on Optimized Variational Mode Decomposition and SSA-LSTM. Sensors. 2024; 24(19):6454. https://doi.org/10.3390/s24196454
Chicago/Turabian StyleZhang, Jingzhao, Yuxin Cui, Zhenguo Yan, Yuxin Huang, Chenyu Zhang, Jinlong Zhang, Jiantao Guo, and Fei Zhao. 2024. "Time Series Prediction of Gas Emission in Coal Mining Face Based on Optimized Variational Mode Decomposition and SSA-LSTM" Sensors 24, no. 19: 6454. https://doi.org/10.3390/s24196454
APA StyleZhang, J., Cui, Y., Yan, Z., Huang, Y., Zhang, C., Zhang, J., Guo, J., & Zhao, F. (2024). Time Series Prediction of Gas Emission in Coal Mining Face Based on Optimized Variational Mode Decomposition and SSA-LSTM. Sensors, 24(19), 6454. https://doi.org/10.3390/s24196454