Improving Non-Line-of-Sight Identification in Cellular Positioning Systems Using a Deep Autoencoding and Generative Adversarial Network Model
Abstract
:1. Introduction
2. Related Works
2.1. Conventional Methods
2.2. Machine Learning Methods
2.3. Contributions
- We improved the basic multipath channel propagation model for a uniform planar array (UPA)-based 5G transmission system. The traditional direction-of-arrival (DoA)-based positioning system model solely focuses on the phase shift of the wavefront reaching each array element without considering the signal content. Therefore, this model is limited to single-frequency or signals centered around a single frequency, failing to meet the analysis requirements of Orthogonal Frequency Division Multiplexing (OFDM) systems. In this study, we analyzed the delay angle of the signal arriving at each array element and derived the phase shift of the position of the array element across all frequency points within the transmission bandwidth. Specifically, in OFDM systems, the improved model can analyze the impact of the delay angle of the signal arriving at each array element on every subcarrier. Finally, we constructed a channel frequency response (CFR) matrix of the UPA-based 5G transmission system.
- We refer to the processing method for the CFR in the fingerprint localization system and transform the CFR into an angle-delay channel power matrix (ADCPM) as the input to the network so that the network can learn the potential features of the LoS distribution more intuitively [73]. However, owing to variation in the UE location, the ADCPM obtained by the transformation is sparse. Moreover, the peak positions always differ, which significantly affects the learning of other potential features by the network. To this end, we propose a deep autoencoder with channel transformer (DACT) architecture, which utilizes an AE for feature extraction of the ADCPM, introduces the spatial transformer network (STN) to transform the ADCPM, and constrains the loss function related to the difference in the encoder output before and after the transformation, making the network less sensitive to the peak positions of the ADCPM and more sensitive to the extraction of other potential features of LoS propagation.
- We designed a generative adversarial network (GAN) oriented toward NLoS identification by feeding the AE-encoded ADCPM into the discriminator of the GAN to determine whether it belongs to NLoS propagation. Because the output of the discriminator is a probability, a threshold of 0.5 can be set directly, which solves the problem of threshold selection in traditional NLoS recognition methods. Second, this method can generate various samples from random noise during the generator training process, which allows the discriminator to explore more possibilities without the participation of NLoS samples. This further improves the accuracy of LoS feature extraction and robustness of NLoS identification when compared with the results of pure learning of LoS samples using only the AE. Unlike the KDE method, the proposed method does not need to load training samples in the testing phase, which significantly reduces memory consumption. Finally, because the inputs need to pass through only the encoder and discriminator in the testing phase, the prediction speed is significantly improved when compared with that of the KDE method, which provides strong support for deploying the NLoS recognition method in the localization terminal.
- We simulated the signaling scenarios for 5G sounding reference signals (SRSs) in indoor offices and factories (dense clutter low base station) based on the 3GPP TS 38.901 standard and verified the effectiveness of the proposed method across the scenarios by training in one scenario and validating in the other scenarios.
3. Methodology
3.1. System Model
3.2. Problem Formulation
3.3. Network Inputs
3.4. DACT-GAN
3.5. Loss Function
Algorithm 1. DACT Training Procedure |
|
Algorithm 2. Discriminator Training Procedure |
|
Algorithm 3. Generator Training Procedure |
|
4. Simulation Experiments
4.1. Scenario Set
4.2. Dataset Generation and Testing Platform
4.3. Network Components and Specific Parameters
4.4. Baselines
- KDE [33]. This method is effective when the sample probability distribution is unknown. The principle of KDE is to fit the LoS distribution by taking a portion of the training sample as the baseline for the LoS distribution and then calculating the probability density of the input samples in the LoS distribution, i.e., . is the kernel function with bandwidth h; universally, the Gaussian model is used, i.e., .
- Random Forest [49]. The random forest method, a supervised learning algorithm, necessitates the labeling of NLoS for classification learning. It uses bagging to partition the training set into several subsets and train numerous decision tree models. Test samples are dispatched to several decision trees for analysis, and the model consolidates the classification outcomes from all decision trees and votes to ascertain whether it is NLoS propagation.
- AE-KDE [68]. This approach consists of two steps. Initially, train an autoencoder to thoroughly investigate the latent properties of the training samples. Subsequently, a selection of the encoded samples is utilized as the baseline, and the KDE approach is employed to ascertain if the test sample conforms to the LoS probability distribution, hence indicating whether it represents LoS propagation.
- GANomaly [71]. This model utilizes a generator network composed of an encoder–decoder–encoder architecture with a discriminator that evaluates the latent features encoded from both samples and their reconstructions. Because the training process involved only LoS samples, the input of the NLoS samples caused significant reconstruction errors, thereby enabling the effective identification of NLoS during the testing phase.
5. Results and Discussions
5.1. Data Processing
5.2. Batch Size
5.3. Label Smoothing
5.4. Early Stopping
5.5. Baseline Parameter Selection
5.6. Computations and Memory Access Requirements
5.7. Performance Comparison
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of the Far-Field Assumption in This Paper
References
- Guo, X.; Ansari, N.; Hu, F.; Shao, Y.; Elikplim, N.R.; Li, L. A Survey on Fusion-Based Indoor Positioning. IEEE Commun. Surv. Tutor. 2020, 22, 566–594. [Google Scholar] [CrossRef]
- Dao, D.; Rizos, C.; Wang, J. Location-Based Services: Technical and Business Issues. GPS Solut. 2002, 6, 169–178. [Google Scholar] [CrossRef]
- Chen, R.; Guo, G.; Chen, L.; Niu, X. Application Status, Development and Future Trend of High-Precision Indoor Navigation and Tracking. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 1591–1600. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.; Zhong, Z.; Liu, F.; Chapman, M.A.; Cao, D.; Li, J. Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3412–3432. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Ansari, N.; Li, L.; Duan, L. A Hybrid Positioning System for Location-Based Services: Design and Implementation. IEEE Commun. Mag. 2020, 58, 90–96. [Google Scholar] [CrossRef]
- Sun, X.; Ansari, N. EdgeIoT: Mobile Edge Computing for the Internet of Things. IEEE Commun. Mag. 2016, 54, 22–29. [Google Scholar] [CrossRef]
- Jin, S.; Wang, Q.; Dardanelli, G. A Review on Multi-GNSS for Earth Observation and Emerging Applications. Remote Sens. 2022, 14, 3930. [Google Scholar] [CrossRef]
- Garrido, M.S.; Giménez, E.; de Lacy, M.C.; Gil, A.J. Surveying at the Limits of Local RTK Networks: Test Results from the Perspective of High Accuracy Users. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 256–264. [Google Scholar] [CrossRef]
- Wen, W.W.; Zhang, G.; Hsu, L.-T. GNSS NLOS Exclusion Based on Dynamic Object Detection Using LiDAR Point Cloud. IEEE Trans. Intell. Transp. Syst. 2021, 22, 853–862. [Google Scholar] [CrossRef]
- Zheng, Z.; Sun, X.; Wen, Z.; Wang, X.; Fan, W.; Yan, H.; Li, Y. Indoor Localization and Trajectory Correction with Point Cloud-Derived Backbone Map. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103783. [Google Scholar] [CrossRef]
- Liu, T.; Li, B.; Chen, G.; Yang, L.; Qiao, J.; Chen, W. Tightly Coupled Integration of GNSS/UWB/VIO for Reliable and Seamless Positioning. IEEE Trans. Intell. Transp. Syst. 2024, 25, 2116–2128. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Zhao, Y.; Liu, Y.; Cuthbert, L. Bluetooth Positioning Using RSSI and Triangulation Methods. In Proceedings of the 2013 IEEE 10th Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2013; pp. 837–842. [Google Scholar]
- Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors 2016, 16, 707. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Chan, S.-H.G. Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons. IEEE Commun. Surv. Tutor. 2016, 18, 466–490. [Google Scholar] [CrossRef]
- Li, Q.; Zhuang, Y.; Huai, J. Multi-Sensor Fusion for Robust Localization with Moving Object Segmentation in Complex Dynamic 3D Scenes. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103507. [Google Scholar] [CrossRef]
- Liu, G.; Hou, X.; Huang, Y.; Shao, H.; Zheng, Y.; Wang, F.; Wang, Q. Coverage Enhancement and Fundamental Performance of 5G: Analysis and Field Trial. IEEE Commun. Mag. 2019, 57, 126–131. [Google Scholar] [CrossRef]
- Keating, R.; Säily, M.; Hulkkonen, J.; Karjalainen, J. Overview of Positioning in 5G New Radio. In Proceedings of the 2019 16th International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland, 27–30 August 2019; pp. 320–324. [Google Scholar]
- 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on NR Positioning Support. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3501 (accessed on 23 August 2023).
- 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Channel Model for Frequencies from 0.5 to 100 GHz. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3173 (accessed on 26 August 2023).
- 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NG Radio Access Network (NG-RAN); Stage 2 Functional Specification of User Equipment (UE) Positioning in NG-RAN. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3310 (accessed on 23 August 2023).
- Cao, B.; Wang, S.; Ge, S.; Liu, W. Improving the Positioning Accuracy of UWB System for Complicated Underground NLOS Environments. IEEE Syst. J. 2022, 16, 1808–1819. [Google Scholar] [CrossRef]
- Feng, D.; Peng, J.; Zhuang, Y.; Guo, C.; Zhang, T.; Chu, Y.; Zhou, X.; Xia, X.-G. An Adaptive IMU/UWB Fusion Method for NLOS Indoor Positioning and Navigation. IEEE Internet Things J. 2023, 10, 11414–11428. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, W.; Ansari, N. Robust TDOA-Based Localization for IoT via Joint Source Position and NLOS Error Estimation. IEEE Internet Things J. 2019, 6, 8529–8541. [Google Scholar] [CrossRef]
- 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; 5G System; Location Management Services; Stage 3. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3407 (accessed on 23 August 2023).
- Chen, P.-C. A Non-Line-of-Sight Error Mitigation Algorithm in Location Estimation. In Proceedings of the 1999 IEEE Wireless Communications and Networking Conference (Cat. No.99TH8466), New Orleans, LA, USA, 21–24 September 1999; Volume 1, pp. 316–320. [Google Scholar]
- Aghaie, N.; Tinati, M.A. Localization of WSN Nodes Based on NLOS Identification Using AOAs Statistical Information. In Proceedings of the 2016 24th Iranian Conference on Electrical Engineering (ICEE), Shiraz, Iran, 10–12 May 2016; pp. 496–501. [Google Scholar]
- Wang, Y.; Yang, H.; Gong, Y. A Positioning Algorithm Based on Improved Robust Extended Kalman Filter with NLOS Identification and Mitigation. Eurasip J. Wirel. Commun. Netw. 2023, 2023, 60. [Google Scholar] [CrossRef]
- 5G Channel Model for Bands up to 100 GHz. Available online: https://prepareforchange.net/wp-content/uploads/2018/12/5G_Channel_Model_for_bands_up_to100_GHz2015-12-6.pdf (accessed on 6 September 2023).
- Li, S.; Shen, Y.; Wang, Y.; Zhang, J.; Li, H.; Zhang, D.; Li, H. PiDiNet-TIR: An Improved Edge Detection Algorithm for Weakly Textured Thermal Infrared Images Based on PiDiNet. Infrared Phys. Technol. 2024, 138, 105257. [Google Scholar] [CrossRef]
- Yu, X.; Liang, X.; Zhou, Z.; Zhang, B.; Xue, H. Deep Soft Threshold Feature Separation Network for Infrared Handprint Identity Recognition and Time Estimation. Infrared Phys. Technol. 2024, 138, 105223. [Google Scholar] [CrossRef]
- Yu, X.; Liang, X.; Zhou, Z.; Zhang, B. Multi-Task Learning for Hand Heat Trace Time Estimation and Identity Recognition. Expert Syst. Appl. 2024, 255, 124551. [Google Scholar] [CrossRef]
- Diao, H.; Zhao, J. CMD-Based NLOS Identification and Mitigation in Wireless Sensor Networks. In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Lang, C.I.; Sun, F.-K.; Lawler, B.; Dillon, J.; Dujaili, A.A.; Ruth, J.; Cardillo, P.; Alfred, P.; Bowers, A.; Mckiernan, A.; et al. One Class Process Anomaly Detection Using Kernel Density Estimation Methods. IEEE Trans. Semicond. Manuf. 2022, 35, 457–469. [Google Scholar] [CrossRef]
- Yan, L.; Lu, Y.; Zhang, Y. An Improved NLOS Identification and Mitigation Approach for Target Tracking in Wireless Sensor Networks. IEEE Access 2017, 5, 2798–2807. [Google Scholar] [CrossRef]
- Atzeni, I.; Arnau, J.; Kountouris, M. Downlink Cellular Network Analysis With LOS/NLOS Propagation and Elevated Base Stations. IEEE Trans. Wirel. Commun. 2018, 17, 142–156. [Google Scholar] [CrossRef]
- Huang, C.; Molisch, A.F.; He, R.; Wang, R.; Tang, P.; Ai, B.; Zhong, Z. Machine Learning-Enabled LOS/NLOS Identification for MIMO Systems in Dynamic Environments. IEEE Trans. Wirel. Commun. 2020, 19, 3643–3657. [Google Scholar] [CrossRef]
- Galiotto, C.; Pratas, N.K.; Doyle, L.; Marchetti, N. Effect of LOS/NLOS Propagation on 5G Ultra-Dense Networks. Comput. Netw. 2017, 120, 126–140. [Google Scholar] [CrossRef]
- Wang, F.; Tang, H.; Chen, J. Survey on NLOS Identification and Error Mitigation for UWB Indoor Positioning. Electronics 2023, 12, 1678. [Google Scholar] [CrossRef]
- Sang, C.L.; Steinhagen, B.; Homburg, J.D.; Adams, M.; Hesse, M.; Rückert, U. Identification of NLOS and Multi-Path Conditions in UWB Localization Using Machine Learning Methods. Appl. Sci. 2020, 10, 3980. [Google Scholar] [CrossRef]
- Maranò, S.; Gifford, W.M.; Wymeersch, H.; Win, M.Z. NLOS Identification and Mitigation for Localization Based on UWB Experimental Data. IEEE J. Sel. Areas Commun. 2010, 28, 1026–1035. [Google Scholar] [CrossRef]
- Xiao, Z.; Wen, H.; Markham, A.; Trigoni, N.; Blunsom, P.; Frolik, J. Identification and Mitigation of Non-Line-of-Sight Conditions Using Received Signal Strength. In Proceedings of the 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Lyon, France, 7–9 October 2013; pp. 667–674. [Google Scholar]
- Tabaa, M.; Saadaoui, S.; Chehaitly, M.; Dandache, A. NLOS Identification for UWB Body Communications. Int. J. Comput. Appl. 2015, 124, 12–17. [Google Scholar] [CrossRef]
- Xiao, Z.; Wen, H.; Markham, A.; Trigoni, N.; Blunsom, P.; Frolik, J. Non-Line-of-Sight Identification and Mitigation Using Received Signal Strength. IEEE Trans. Wirel. Commun. 2015, 14, 1689–1702. [Google Scholar] [CrossRef]
- Wen, K.; Yu, K.; Li, Y. NLOS Identification and Compensation for UWB Ranging Based on Obstruction Classification. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017; pp. 2704–2708. [Google Scholar]
- Stahlke, M.; Kram, S.; Mumme, T.; Seitz, J. Discrete Positioning Using UWB Channel Impulse Responses and Machine Learning. In Proceedings of the 2019 International Conference on Localization and GNSS (ICL-GNSS), Nuremberg, Germany, 4–6 June 2019; pp. 1–6. [Google Scholar]
- Barral, V.; Escudero, C.J.; García-Naya, J.A.; Maneiro-Catoira, R. NLOS Identification and Mitigation Using Low-Cost UWB Devices. Sensors 2019, 19, 3464. [Google Scholar] [CrossRef] [PubMed]
- Kram, S.; Stahlke, M.; Feigl, T.; Seitz, J.; Thielecke, J. UWB Channel Impulse Responses for Positioning in Complex Environments: A Detailed Feature Analysis. Sensors 2019, 19, 5547. [Google Scholar] [CrossRef]
- Chang, T.; Jiang, S.; Sun, Y.; Jia, A.; Wang, W. Multi-Bandwidth NLOS Identification Based on Deep Learning Method. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021; pp. 1–5. [Google Scholar]
- Ramadan, M.; Sark, V.; Gutierrez, J.; Grass, E. NLOS Identification for Indoor Localization Using Random Forest Algorithm. In Proceedings of the 22nd International ITG Workshop on Smart Antennas, Bochum, Germany, 14–16 March 2018; pp. 1–5. [Google Scholar]
- De Sousa, M.N.; Thomä, R.S. Applying Random Forest and Multipath Fingerprints to Enhance TDOA Localization Systems. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2316–2320. [Google Scholar] [CrossRef]
- Kurniawan, E.; Zhiwei, L.; Sun, S. Machine Learning-Based Channel Classification and Its Application to IEEE 802.11ad Communications. In Proceedings of the 2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Zhu, Y.; Xia, W.; Yan, F.; Shen, L. NLOS Identification via AdaBoost for Wireless Network Localization. IEEE Commun. Lett. 2019, 23, 2234–2237. [Google Scholar] [CrossRef]
- Chitambira, B.; Armour, S.; Wales, S.; Beach, M. NLOS Identification and Mitigation for Geolocation Using Least-Squares Support Vector Machines. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar]
- Yang, X.; Zhao, F.; Chen, T. NLOS Identification for UWB Localization Based on Import Vector Machine. AEU J. Electron. Commun. 2018, 87, 128–133. [Google Scholar] [CrossRef]
- Krishnan, S.; Santos, R.X.M.; Ranier Yap, E.; Zin, M.T. Improving UWB Based Indoor Positioning in Industrial Environments through Machine Learning. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp. 1484–1488. [Google Scholar]
- Barral, V.; Escudero, C.J.; García-Naya, J.A. NLOS Classification Based on RSS and Ranging Statistics Obtained from Low-Cost UWB Devices. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September 2019; pp. 1–5. [Google Scholar]
- Cui, Z.; Gao, Y.; Hu, J.; Tian, S.; Cheng, J. LOS/NLOS Identification for Indoor UWB Positioning Based on Morlet Wavelet Transform and Convolutional Neural Networks. IEEE Commun. Lett. 2021, 25, 879–882. [Google Scholar] [CrossRef]
- Nguyen, V.-H.; Nguyen, M.-T.; Choi, J.; Kim, Y.-H. NLOS Identification in WLANs Using Deep LSTM with CNN Features. Sensors 2018, 18, 4057. [Google Scholar] [CrossRef]
- Zeng, T.; Chang, Y.; Zhang, Q.; Hu, M.; Li, J. CNN-Based LOS/NLOS Identification in 3-D Massive MIMO Systems. IEEE Commun. Lett. 2018, 22, 2491–2494. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, B.; Wang, J.; Li, Y.; Qi, W. A Simple Efficient Lightweight CNN Method for LOS/NLOS Identification in Wireless Communication Systems. IEEE Commun. Lett. 2023, 27, 1515–1519. [Google Scholar] [CrossRef]
- Si, M.; Wang, Y.; Siljak, H.; Seow, C.; Yang, H. A Lightweight CIR-Based CNN With MLP for NLOS/LOS Identification in a UWB Positioning System. IEEE Commun. Lett. 2023, 27, 1332–1336. [Google Scholar] [CrossRef]
- Kong, Q. NLOS Identification for UWB Positioning Based on IDBO and Convolutional Neural Networks. IEEE Access 2023, 11, 144705–144721. [Google Scholar] [CrossRef]
- Chalapathy, R.; Menon, A.K.; Chawla, S. Anomaly Detection Using One-Class Neural Networks 2019. arXiv 2018, arXiv:1802.06360. [Google Scholar]
- Ruff, L.; Vandermeulen, R.; Goernitz, N.; Deecke, L.; Siddiqui, S.A.; Binder, A.; Müller, E.; Kloft, M. Deep One-Class Classification. In Proceedings of the 35th International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 4393–4402. [Google Scholar]
- Liou, C.-Y.; Cheng, W.-C.; Liou, J.-W.; Liou, D.-R. Autoencoder for Words. Neurocomputing 2014, 139, 84–96. [Google Scholar] [CrossRef]
- Zhai, J.; Zhang, S.; Chen, J.; He, Q. Autoencoder and Its Various Variants. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 415–419. [Google Scholar]
- Chen, P.; Li, P.; Wang, B.; Ding, X.; Zhang, Y.; Zhang, T.; Yu, T. GFSegNet: A Multi-Scale Segmentation Model for Mining Area Ground Fissures. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103788. [Google Scholar] [CrossRef]
- Cao, V.L.; Nicolau, M.; McDermott, J. A Hybrid Autoencoder and Density Estimation Model for Anomaly Detection. In Proceedings of the Parallel Problem Solving from Nature—PPSN XIV, Edinburgh, UK, 17–21 September 2016; Springer International Publishing: Cham, Switzerland, 2016; pp. 717–726. [Google Scholar]
- Dotti, D.; Popa, M.; Asteriadis, S. Unsupervised Discovery of Normal and Abnormal Activity Patterns in Indoor and Outdoor Environments. In Proceedings of the International Conference on Computer Vision Theory and Applications, Porto, Portugal, 27 February–1 March 2017; Volume 6, pp. 210–217. [Google Scholar]
- Abati, D.; Porrello, A.; Calderara, S.; Cucchiara, R. Latent Space Autoregression for Novelty Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 481–490. [Google Scholar]
- Akcay, S.; Atapour-Abarghouei, A.; Breckon, T.P. GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training. In Proceedings of the Computer Vision—ACCV 2018, Perth, Australia, 2–6 December 2018; Springer International Publishing: Cham, Switzerland, 2019; pp. 622–637. [Google Scholar]
- Yu, W.; Huang, Q. A Deep Encoder-Decoder Network for Anomaly Detection in Driving Trajectory Behavior under Spatio-Temporal Context. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103115. [Google Scholar] [CrossRef]
- Wu, C.; Yi, X.; Wang, W.; You, L.; Huang, Q.; Gao, X.; Liu, Q. Learning to Localize: A 3D CNN Approach to User Positioning in Massive MIMO-OFDM Systems. IEEE Trans. Wirel. Commun. 2021, 20, 4556–4570. [Google Scholar] [CrossRef]
- Papadopoulos, H.; Wang, C.; Bursalioglu, O.; Hou, X.; Kishiyama, Y. Massive MIMO Technologies and Challenges towards 5G. IEICE Trans. Commun. 2016, E99-B, 602–621. [Google Scholar]
- Jin, H.; Liu, K.; Zhang, M.; Zhang, L.; Lee, G.; Farag, E.N.; Zhu, D.; Onggosanusi, E.; Shafi, M.; Tataria, H. Massive MIMO Evolution Toward 3GPP Release 18. IEEE J. Sel. Areas Commun. 2023, 41, 1635–1654. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Cheng, J.; Zhu, Y.; Zhao, Y.; Li, T.; Chen, M.; Sun, Q.; Gu, Q.; Zhang, X. Application of an Improved U-Net with Image-to-Image Translation and Transfer Learning in Peach Orchard Segmentation. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103871. [Google Scholar] [CrossRef]
- Chu, S.; Li, P.; Xia, M.; Lin, H.; Qian, M.; Zhang, Y. DBFGAN: Dual Branch Feature Guided Aggregation Network for Remote Sensing Image. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103141. [Google Scholar] [CrossRef]
- Park, M.; Tran, D.Q.; Bak, J.; Park, S. Advanced Wildfire Detection Using Generative Adversarial Network-Based Augmented Datasets and Weakly Supervised Object Localization. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103052. [Google Scholar] [CrossRef]
- 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; User Equipment (UE) Radio Transmission and Reception; Part 1: Range 1 Standalone. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3283 (accessed on 10 November 2023).
- Jaderberg, M.; Simonyan, K.; Zisserman, A.; Kavukcuoglu, K. Spatial Transformer Networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Curran Associates, Inc.: New York, NY, USA, 2015; Volume 28. [Google Scholar]
Computational Requirements (M FLOPs) | Memory Access Requirements (M Bytes) | |
---|---|---|
DACT-GAN | 156.4420 | 1.3303 |
AE-KDE | 179.0490 | 20.0560 |
GANomaly | 465.8480 | 3.5348 |
KDE | 113.2790 | 155.9950 |
AUC | F-Score | Accuracy | Precision | Recall | |
---|---|---|---|---|---|
DACT-GAN | 0.8299 | 0.8289 | 0.8299 | 0.8371 | 0.8299 |
AE-KDE | 0.8124 | 0.8103 | 0.8124 | 0.8271 | 0.8124 |
GANomaly | 0.7684 | 0.7684 | 0.7684 | 0.7686 | 0.7684 |
Random Forest | 0.7152 | 0.6926 | 0.7152 | 0.8047 | 0.7152 |
KDE | 0.6916 | 0.6592 | 0.6916 | 0.8090 | 0.6916 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Deng, Z.; Huo, Y.; Chen, W. Improving Non-Line-of-Sight Identification in Cellular Positioning Systems Using a Deep Autoencoding and Generative Adversarial Network Model. Sensors 2024, 24, 6494. https://doi.org/10.3390/s24196494
Gao Y, Deng Z, Huo Y, Chen W. Improving Non-Line-of-Sight Identification in Cellular Positioning Systems Using a Deep Autoencoding and Generative Adversarial Network Model. Sensors. 2024; 24(19):6494. https://doi.org/10.3390/s24196494
Chicago/Turabian StyleGao, Yanbiao, Zhongliang Deng, Yuqi Huo, and Wenyan Chen. 2024. "Improving Non-Line-of-Sight Identification in Cellular Positioning Systems Using a Deep Autoencoding and Generative Adversarial Network Model" Sensors 24, no. 19: 6494. https://doi.org/10.3390/s24196494
APA StyleGao, Y., Deng, Z., Huo, Y., & Chen, W. (2024). Improving Non-Line-of-Sight Identification in Cellular Positioning Systems Using a Deep Autoencoding and Generative Adversarial Network Model. Sensors, 24(19), 6494. https://doi.org/10.3390/s24196494