Determination of N-Acetyl-L-cysteine Ethyl Ester (NACET) by Sequential Injection Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solution Preparation
2.2. Apparatus
2.3. Analytical Procedure
2.4. Optimization of the Design and Operational Parameters
3. Results and Discussion
3.1. Method Optimization
3.1.1. Flow Rate
3.1.2. Aspiration Sequence and Reagent Volume
3.1.3. Sample Volume and Holding Coil Length
3.1.4. Reaction Coil
3.1.5. Reagent Concentration
3.2. Analytical Figures of Merit
3.3. Interferences
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsikas, D.; Schwedhelm, K.S.; Surdacki, A.; Giustarini, D.; Rossi, R.; Kukoc-Modun, L.; Kedia, G.; Ückert, S. S-Nitroso-N-acetyl-L-cysteine ethyl ester (SNACET) and N-acetyl-L-cysteine ethyl ester (NACET)–Cysteine-based drug candidates with unique pharmacological profiles for oral use as NO, H2S and GSH suppliers and as antioxidants: Results and overview. J. Pharm. Anal. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tosi, G.M.; Giustarini, D.; Franci, L.; Minetti, A.; Imperatore, F.; Caldi, E.; Fiorenzani, P.; Aloisi, A.M.; Sparatore, A.; Rossi, R.; et al. Superior Properties of N-Acetylcysteine Ethyl Ester over N-Acetyl Cysteine to Prevent Retinal Pigment Epithelial Cells Oxidative Damage. Int. J. Mol. Sci. 2021, 22, 600. [Google Scholar] [CrossRef]
- Giustarini, D.; Galvagni, F.; Dalle Donne, I.; Milzani, A.; Severi, F.M.; Santucci, A.; Rossi, R. N-acetylcysteine ethyl ester as GSH enhancer in human primary endothelial cells: A comparative study with other drugs. Free Radic. Biol. Med. 2018, 126, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Giustarini, D.; Milzani, A.; Dalle-Donne, I.; Tsikas, D.; Rossi, R. N-Acetylcysteine ethyl ester (NACET): A novel lipophilic cell-permeable cysteine derivative with an unusual pharmacokinetic feature and remarkable antioxidant potential. Biochem. Pharmacol. 2012, 84, 1522–1533. [Google Scholar] [CrossRef] [PubMed]
- Kukoc-Modun, L.; Tsikas, D.; Kraljević, T.; Biocic, M.; Radić, N. Kinetic Spectrophotometric Determination of N-Acetyl-L-cysteine Ethyl Ester (NACET) Generating Chromogenic Copper(I)Ln Complexes with Different Ligands. Croat. Chem. Acta 2017, 90, 263–271. [Google Scholar] [CrossRef]
- Kukoc-Modun, L.; Kraljević, T.; Tsikas, D.; Radić, N.; Modun, D. Determination of N-Acetyl-l-cysteine Ethyl Ester (NACET) by Flow Injection Analysis and Spectrophotometric Detection Using Different Thiol-Sensitive Ligands. Molecules 2021, 26, 6826. [Google Scholar] [CrossRef] [PubMed]
- Amir, R.; Hadi, H. Spectrophotometric Determination of Vitamin B1 in Dosage forms Using Drugs Compounds as Reagents by Normal and Reverse Flow Injection Methods. Curr. Pharm. Anal. 2022, 18, 218–227. [Google Scholar] [CrossRef]
- Khan, A.; Asghar, M.; Yaqoob, M. Determination of Nalbuphine Hydrochloride in Pharmaceutical Formulations Using Diperiodatoargentate(III)-Rhodamine-B Chemiluminescence System by Flow Injection Analysis. Anal. Sci. 2020, 36, 1223–1230. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Li, Y.S.; Zhao, Y.; Luo, Y.X.; Gao, X.F. A rapid and automated flow injection spectrophotometric determination method for pioglitazone/metformin hydrochloride in pharmaceutical preparation and to confirmation of its reaction principle using PCX column. Microchem. J. 2020, 155, 104698. [Google Scholar] [CrossRef]
- Faria, L.V.; Lima, A.P.; Araújo, F.M.; Lisboa, T.P.; Matos, M.A.C.; Munoz, R.A.A.; Matos, R.C. High-throughput amperometric determination of tetracycline residues in milk and quality control of pharmaceutical formulations: Flow-injection versus batch-injection analysis. Anal. Methods 2019, 11, 5328–5336. [Google Scholar] [CrossRef]
- Al Samarrai, S.Y.; Abdoon, F.M.; Hashim, K.K. A simple method to determine tramadol using a coated-wire electrode as a detector in the flow injection analysis. Microchem. J. 2019, 146, 588–591. [Google Scholar] [CrossRef]
- Lima, A.B.; Ferreira, L.F.; Barbosa, S.L.; Gil, E.D.; da Silva, R.A.B.; dos Santos, W.T.P. Selective Determination of Verapamil in Pharmaceutics and Urine Using a Boron-doped Diamond Electrode Coupled to Flow Injection Analysis with Multiple-pulse Amperometric Detection. Electroanalysis 2018, 30, 1872–1877. [Google Scholar]
- Ruzicka, J.; Marshall, G.D. Sequential injection: A new concept for chemical sensors, process analysis and laboratory assays. Anal. Chim. Acta 1990, 237, 329–343. [Google Scholar] [CrossRef]
- Nesmerák, K.; Kroiherová, A.; Hranícek, J. Determination of chlorpromazine, levomepromazine, and promethazine by sequential injection analysis with VIS spectrometric or spectrofluorimetric detection. Monatshefte Fur Chem. 2022, 153, 781–787. [Google Scholar] [CrossRef]
- Oteef, M.D.Y.; Idris, A.M. Flow Injection Techniques for Tetracycline Quantification: A Review. Crit. Rev. Anal. Chem. 2023, 53, 396–414. [Google Scholar] [CrossRef] [PubMed]
- Zagatto, E.A.G.; Rocha, F.R.P. Large-scale flow analysis: From repetitive assays to expert analyzers. Talanta 2021, 233, 122479. [Google Scholar] [CrossRef]
- Cini, N.; Gölcü, A. Spectrophotometric Methodologies Applied for Determination of Pharmaceuticals. Curr. Anal. Chem. 2021, 17, 1141–1168. [Google Scholar] [CrossRef]
- Tsikas, D.; Dehnert, S.; Urban, K.; Surdacki, A.; Meyer, H.H. GC–MS analysis of S-nitrosothiols after conversion to S-nitroso-N-acetyl cysteine ethyl ester and in-injector nitrosation of ethyl acetate. J. Chromatogr. B 2009, 877, 3442–3455. [Google Scholar] [CrossRef]
- Miller, J.C.; Miller, J.N. Statistics and Chemometrics for Analytical Chemistry, 5th ed.; Pearson Education/Prentice Hall: Harlow, UK, 2005. [Google Scholar]
- Halko, R.; Prochazkova, S.; Okenicova, L.; Hutta, M.; Bozek, P. Determination of Copper in Human Urine by RP-LC After Pre-column Derivatization with Neocuproine and Use of Monolithic Column. Chromatographia 2014, 77, 1019–1025. [Google Scholar] [CrossRef]
- Brenner, A.J.; Harris, E.D. A Quantitative Test for Copper Using Bicinchoninic Acid. Anal. Biochem. 1995, 226, 80–84. [Google Scholar] [CrossRef]
- James, B.R.; Williams, R.J.P. 383. The oxidation–reduction potentials of some copper complexes. J. Chem. Soc. (Resumed) 1961, 2007–2019. [Google Scholar] [CrossRef]
- Chen, D.L.; Wang, X.Y.; He, Y.H.; Kai, T.H.; Li, Z.Q.; Xiang, J.; Jiang, D.L.; Zhou, F.M. Studies of Electrode Reactions and Coordination Geometries of Cu(I) and Cu(II) Complexes with Bicinchoninic Acid. Electroanalysis 2018, 30, 479–485. [Google Scholar] [CrossRef]
- Bagchi, P.; Morgan, M.T.; Bacsa, J.; Fahrni, C.J. Robust Affinity Standards for Cu(I) Biochemistry. J. Am. Chem. Soc. 2013, 135, 18549–18559. [Google Scholar] [CrossRef] [PubMed]
Step | Valve Position | Operation Time (s) * | Flow Rate (μL min−1) | Volume (μL) | Operation Description |
---|---|---|---|---|---|
1 | 1 | 3 | 3000 | 150 | Aspirating reagent to the holding coil |
2 | 2–9 | 5 | 3000 | 250 | Aspirating sample to the holding coil |
3 | 1 | 2 | 3000 | 100 | Aspirating reagent to the holding coil |
4NCN, BCA | 10 | 60 | 3000 | 3000 | Propelling of the reaction mixture to the flow cell |
4BCS | 10 | 30 | 6000 | 3000 |
Parameter | Initial Values | Studied Range | Optimal Value | ||
---|---|---|---|---|---|
NCN Method | BCA Method | BCS Method | |||
Carrier stream flow rate (μL min−1) | 1000–10,000 | 3000 | 3000 | 6000 | |
Aspiration sequence | Reagent–standard | (1) Reagent–standard (2) Standard–reagent (3) Reagent–standard–reagent | 3 | 3 | 3 |
Reagent volume (μL) | 250 | 50–450 | 250 (150 + 100) | 250 (150 + 100) | 250 (150 + 100) |
Sample volume (μL) | 250 | 50–450 | 250 | 250 | 250 |
Holding coil volume (μL) | 1000 | 500, 1000 | 500 | 500 | 500 |
Reaction coil length (cm) | 70 | 30–120 | 30 | 30 | 30 |
Reagent concentration (mol L−1) | 4.0 × 10−4 | 1.0 × 10−4–1.0 × 10−3 | 4.0 × 10−4 | 4.0 × 10−4 | 4.0 × 10−4 |
Cu(II)-NCN | Cu(II)-BCA | Cu(II)-BCS | |
---|---|---|---|
Linear range (mol L−1) | 8 × 10−6–2 × 10−4 | 6 × 10−6 –1 × 10−4 | 4 × 10−6–1 × 10−4 |
Calibration equation (A = aC + b) | |||
a ± SD | (3.893 ± 0.041) × 103 | (3.863 ± 0.070) × 103 | (6.477 ± 0.055) × 103 |
b ± SD | (1.247 ± 0.369) × 10−2 | −(4.696 ± 3.689) × 10−2 | (9.562 ± 2.737) × 10−3 |
LOD (mol L−1) | 5.5 × 10-6 | 5.2 × 10−6 | 2.6 × 10−6 |
RSD at 8 × 10−6 and 4 × 10−5 mol L−1 (%) | 1.6/1.7 | 1.2/2.5 | 0.7/0.9 |
Sampling rate (h−1) | 60 | 60 | 78 |
Interferent | NACET *: Interferent (Molar Ratio) | ||
---|---|---|---|
NCN | BCA | BCS | |
Glucose | 1:500 | 1:500 | 1:500 |
Fructose | 1:500 | 1:500 | 1:500 |
Lactose | 1:500 | 1:500 | 1:500 |
Citric acid | 1:10 | 1:5 | 1:250 |
Tartaric acid | 1:10 | 1:5 | 1:500 |
Boric acid | 1:500 | 1:500 | 1:500 |
Na2SO4 | 1:500 | 1:500 | 1:500 |
KNO3 | 1:500 | 1:500 | 1:500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukoc-Modun, L.; Kraljevic, T.; Tsikas, D.; Spassov, T.G.; Kolev, S.D. Determination of N-Acetyl-L-cysteine Ethyl Ester (NACET) by Sequential Injection Analysis. Sensors 2024, 24, 312. https://doi.org/10.3390/s24020312
Kukoc-Modun L, Kraljevic T, Tsikas D, Spassov TG, Kolev SD. Determination of N-Acetyl-L-cysteine Ethyl Ester (NACET) by Sequential Injection Analysis. Sensors. 2024; 24(2):312. https://doi.org/10.3390/s24020312
Chicago/Turabian StyleKukoc-Modun, Lea, Tomislav Kraljevic, Dimitrios Tsikas, Tony G. Spassov, and Spas D. Kolev. 2024. "Determination of N-Acetyl-L-cysteine Ethyl Ester (NACET) by Sequential Injection Analysis" Sensors 24, no. 2: 312. https://doi.org/10.3390/s24020312
APA StyleKukoc-Modun, L., Kraljevic, T., Tsikas, D., Spassov, T. G., & Kolev, S. D. (2024). Determination of N-Acetyl-L-cysteine Ethyl Ester (NACET) by Sequential Injection Analysis. Sensors, 24(2), 312. https://doi.org/10.3390/s24020312