SAR Image Generation Method Using DH-GAN for Automatic Target Recognition
Abstract
:1. Introduction
2. Methods
2.1. Theoretical Background
2.2. DH-GAN Model Framework
2.3. Power Spectrum Density Analysis
2.4. CNN Model Frame
3. Experimental Study
3.1. MSTAR Dataset
3.2. SAR Image Generation
3.3. Recognition Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Wang, Z.; Hua, Q.; Shang, W.L.; Luo, Q.; Yu, K. AI-empowered speed extraction via port-like videos for vehicular trajectory analysis. IEEE Trans. Intell. Transp. Syst. 2022, 24, 4541–4552. [Google Scholar] [CrossRef]
- Zhao, Q.; Principe, J.C. Support vector machines for SAR automatic target recognition. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 643–654. [Google Scholar]
- Pengcheng, G.; Zheng, L.; Jingjing, W. Radar group target recognition based on HRRPs and weighted mean shift clustering. J. Syst. Eng. Electron. 2020, 31, 1152–1159. [Google Scholar] [CrossRef]
- Morgan, D.A. Deep convolutional neural networks for ATR from SAR imagery. In Algorithms for Synthetic Aperture Radar Imagery XXII; SPIE: Bellingham, WA, USA, 2015; Volume 9475, pp. 116–128. [Google Scholar]
- Park, J.H.; Seo, S.M.; Yoo, J.H. SAR ATR for Limited Training Data Using DS-AE Network. Sensors 2021, 21, 4538. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.; Xuan, C.; Zhai, Y.; Sun, B.; Li, J.; Deng, W.; Mai, C.; Wang, F.; Labati, R.D.; Piuri, V.; et al. TAI-SARNET: Deep Transferred Atrous-Inception CNN for Small Samples SAR ATR. Sensors 2020, 20, 1724. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Deng, Y.; Wang, R.; Zhao, T.; Li, N. SAR ATR based on displacement- and rotation-insensitive CNN. Remote Sens. Lett. 2016, 7, 895–904. [Google Scholar] [CrossRef]
- Shao, J.; Qu, C.; Li, J.; Peng, S. A Lightweight Convolutional Neural Network Based on Visual Attention for SAR Image Target Classification. Sensors 2018, 18, 3039. [Google Scholar] [CrossRef]
- Wang, L.; Bai, X.; Zhou, F. SAR ATR of Ground Vehicles Based on ESENet. Remote Sens. 2019, 11, 1316. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Ni, J.; Zhou, Y.; Hu, W. SAR Target Small Sample Recognition Based on CNN Cascaded Features and AdaBoost Rotation Forest. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1008–1012. [Google Scholar] [CrossRef]
- Ding, J.; Chen, B.; Liu, H.; Huang, M. Convolutional neural network with data augmentation for SAR target recognition. IEEE Geosci. Remote Sens. Lett. 2016, 13, 364–368. [Google Scholar] [CrossRef]
- Lv, J.; Liu, Y. Data Augmentation Based on Attributed Scattering Centers to Train Robust CNN for SAR ATR. IEEE Access 2019, 7, 25459–25473. [Google Scholar] [CrossRef]
- Ding, B.; Wen, G.; Huang, X.; Ma, C.; Yang, X. Data augmentation by multilevel reconstruction using attributed scattering center for SAR target recognition. IEEE Geosci. Remote Sens. Lett. 2017, 14, 979–983. [Google Scholar] [CrossRef]
- Malmgren-Hansen, D.; Kusk, A.; Dall, J.; Nielsen, A.A.; Engholm, R.; Skriver, H. Improving SAR automatic target recognition models with transfer learning from simulated data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1484–1488. [Google Scholar] [CrossRef]
- Kim, S.; Song, W.J.; Kim, S.H. Double weight-based SAR and infrared sensor fusion for automatic ground target recognition with deep learning. Remote Sens. 2018, 10, 72. [Google Scholar] [CrossRef]
- Guo, J.; Lei, B.; Ding, C.; Zhang, Y. Synthetic aperture radar image synthesis by using generative adversarial nets. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1111–1115. [Google Scholar] [CrossRef]
- Gao, F.; Yang, Y.; Wang, J.; Sun, J.; Yang, E.; Zhou, H. A deep convolutional generative adversarial networks (DCGANs)-based semi-supervised method for object recognition in synthetic aperture radar (SAR) images. Remote Sens. 2018, 10, 846. [Google Scholar]
- Cui, Z.; Zhang, M.; Cao, Z.; Cao, C. Image data augmentation for SAR sensor via generative adversarial nets. IEEE Access 2019, 7, 42255–42268. [Google Scholar]
- Liu, L.; Pan, Z.; Qiu, X.; Peng, L. SAR target classification with CycleGAN transferred simulated samples. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4411–4414. [Google Scholar]
- Durall, R.; Keuper, M.; Keuper, J. Watch your up-convolution: Cnn based generative deep neural networks are failing to reproduce spectral distributions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 7890–7899. [Google Scholar]
- Dzanic, T.; Shah, K.; Witherden, F. Fourier spectrum discrepancies in deep network generated images. Adv. Neural Inf. Process. Syst. 2020, 33, 3022–3032. [Google Scholar]
- Frank, J.; Eisenhofer, T.; Schönherr, L.; Fischer, A.; Kolossa, D.; Holz, T. Leveraging frequency analysis for deep fake image recognition. In Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 3247–3258. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the 28th Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Van der Schaaf, V.A.; van Hateren, J.V. Modelling the power spectra of natural images: Statistics and information. Vis. Res. 1996, 36, 2759–2770. [Google Scholar]
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
Layer Type | Image Size | Feature Maps | Kernel Size | Function |
---|---|---|---|---|
Input | 128 × 128 | 1 | - | - |
Convolution | 120 × 120 | 18 | 9 × 9 | ReLU |
Pooling | 20 × 20 | 18 | 6 × 6 | Max Pooling |
Convolution | 16 × 16 | 36 | 5 × 5 | ReLU |
Pooling | 4 × 4 | 36 | 4 × 4 | Max Pooling |
Convolution | 1 × 1 | 120 | 4 × 4 | ReLU |
Fully Connected | - | 1 | 120 × 10 | Softmax |
Output | 10 | - | - | - |
Target Name | Depression Angle = 17 deg | Depression Angle = 15 deg |
---|---|---|
2S1 | 299 | 274 |
BMP2 | 232 | 195 |
BRDM2 | 298 | 274 |
BTR60 | 256 | 195 |
BTR70 | 233 | 196 |
D7 | 299 | 274 |
T62 | 299 | 273 |
T72 | 232 | 196 |
ZIL131 | 299 | 274 |
ZSU234 | 299 | 274 |
Name | MSTAR Only | With DH-GAN | With NSGAN | With LSGAN |
---|---|---|---|---|
2S1 | 88.32 | 94.53 | 91.61 | 94.16 |
BMP2 | 80.51 | 89.23 | 93.33 | 93.85 |
BRDM2 | 93.07 | 91.97 | 98.54 | 89.78 |
BTR60 | 96.41 | 97.44 | 94.36 | 93.85 |
BTR70 | 92.86 | 98.47 | 97.96 | 97.96 |
D7 | 98.91 | 98.54 | 99.27 | 98.91 |
T62 | 92.31 | 97.80 | 91.94 | 97.07 |
T72 | 98.47 | 95.41 | 92.86 | 95.92 |
ZIL131 | 98.18 | 95.62 | 96.35 | 95.26 |
ZSU234 | 98.18 | 99.27 | 97.45 | 97.81 |
Avg. | 93.73 | 95.83 | 95.37 | 95.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oghim, S.; Kim, Y.; Bang, H.; Lim, D.; Ko, J. SAR Image Generation Method Using DH-GAN for Automatic Target Recognition. Sensors 2024, 24, 670. https://doi.org/10.3390/s24020670
Oghim S, Kim Y, Bang H, Lim D, Ko J. SAR Image Generation Method Using DH-GAN for Automatic Target Recognition. Sensors. 2024; 24(2):670. https://doi.org/10.3390/s24020670
Chicago/Turabian StyleOghim, Snyoll, Youngjae Kim, Hyochoong Bang, Deoksu Lim, and Junyoung Ko. 2024. "SAR Image Generation Method Using DH-GAN for Automatic Target Recognition" Sensors 24, no. 2: 670. https://doi.org/10.3390/s24020670
APA StyleOghim, S., Kim, Y., Bang, H., Lim, D., & Ko, J. (2024). SAR Image Generation Method Using DH-GAN for Automatic Target Recognition. Sensors, 24(2), 670. https://doi.org/10.3390/s24020670